
Solution Guide III-C
3D Vision

HALCON 23.11 Progress

Machine vision in 3D world coordinates, Version 23.11.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2003-2023 by MVTec Software GmbH, Munich, Germany MVTec Software GmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Microsoft, Windows, Windows 10 (x64 editions), 11, Windows Server 2016, 2019, 2022 Microsoft .NET, Visual C++ and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

Measurements in 3D become more and more important. HALCON provides many methods to perform 3D mea-
surements. This Solution Guide gives you an overview over these methods, and it assists you with the selection
and the correct application of the appropriate method.

A short characterization of the various methods is given in chapter 1 on page 9. Principles of 3D transformations
and poses as well as the description of the camera model can be found in chapter 2 on page 13. Afterwards, the
methods to perform 3D measurements are described in detail.

The HDevelop example programs that are presented in this Solution Guide can be found in the specified subdirec-
tories of the directory %HALCONEXAMPLES%.

Symbols

The following symbol is used within the manual:

! This symbol indicates an information you should pay attention to.

Contents

1 Introduction 9

2 Basics 13
2.1 3D Transformations and Poses . 13

2.1.1 3D Coordinates . 13
2.1.2 Transformations using 3D Transformation Matrices . 14
2.1.3 Rigid Transformations using Homogeneous Transformation Matrices 18
2.1.4 Transformations using 3D Poses . 20
2.1.5 Transformations using Dual Quaternions and Plücker Coordinates 22

2.2 Camera Model and Parameters . 25
2.2.1 Map 3D World Points to Pixel Coordinates . 26
2.2.2 Area Scan Cameras . 26
2.2.3 Tilt Lenses and the Scheimpflug Principle . 33
2.2.4 Hypercentric Lenses . 34
2.2.5 Line Scan Cameras . 35

2.3 3D Object Models . 38
2.3.1 Obtaining 3D Object Models . 38
2.3.2 Content of 3D Object Models . 40
2.3.3 Modifying 3D Object Models . 43
2.3.4 Extracting Features of 3D Object Models . 49
2.3.5 Matching of 3D Object Models . 50
2.3.6 Visualizing 3D Object Models . 56

3 Metric Measurements in a Specified Plane With a Single Camera 59
3.1 First Example . 60

3.1.1 Single Image Calibration . 60
3.2 3D Camera Calibration . 61

3.2.1 Creating the Calibration Data Model . 62
3.2.2 Specifying Initial Values for the Internal Camera Parameters 62
3.2.3 Describing the Calibration Object . 67
3.2.4 Observing the Calibration Object in Multiple Poses (Images) 71
3.2.5 Restricting the Calibration to Specific Parameters . 72
3.2.6 Performing the Calibration . 72
3.2.7 Accessing the Results of the Calibration . 72
3.2.8 Deleting Observations from the Calibration Data Model 75
3.2.9 Saving the Results . 76
3.2.10 Troubleshooting . 76

3.3 Transforming Image into World Coordinates and Vice Versa . 76
3.3.1 The Main Principle . 77
3.3.2 World Coordinates for Points . 78
3.3.3 World Coordinates for Contours . 78
3.3.4 World Coordinates for Regions . 78
3.3.5 Transforming World Coordinates into Image Coordinates 78
3.3.6 Compensate for Lens Distortions Only . 79

3.4 Rectifying Images . 80
3.4.1 Transforming Images into the WCS . 80
3.4.2 Compensate for Lens Distortions Only . 86

3.5 Inspection of Non-Planar Objects . 87

4 3D Position Recognition of Known Objects 91
4.1 Pose Estimation from Points . 92
4.2 Pose Estimation Using Shape-Based 3D Matching . 95

4.2.1 General Proceeding for Shape-Based 3D Matching . 96
4.2.2 Enhance the Shape-Based 3D Matching . 99
4.2.3 Tips and Tricks for Problem Handling . 101

4.3 Pose Estimation Using Surface-Based 3D Matching . 104
4.3.1 General Proceeding for Surface-Based 3D Matching . 104

4.4 Pose Estimation Using Deformable Surface-Based 3D Matching 107
4.4.1 General Proceeding for Deformable Surface-Based 3D Matching 107

4.5 Pose Estimation Using 3D Primitives Fitting . 111
4.6 Pose Estimation Using Calibrated Perspective Deformable Matching 114
4.7 Pose Estimation Using Calibrated Descriptor-Based Matching 114
4.8 Pose Estimation for Circles . 115
4.9 Pose Estimation for Rectangles . 116

5 3D Vision With a Stereo System 117
5.1 The Principle of Stereo Vision . 117

5.1.1 The Setup of a Stereo Camera System . 120
5.1.2 Resolution of a Stereo Camera System . 120
5.1.3 Optimizing Focus with Tilt Lenses . 121

5.2 Calibrating the Stereo Camera System . 122
5.2.1 Creating and Configuring the Calibration Data Model . 122
5.2.2 Acquiring Calibration Images . 123
5.2.3 Observing the Calibration Object . 123
5.2.4 Calibrating the Cameras . 124

5.3 Binocular Stereo Vision . 124
5.3.1 Comparison of the Stereo Matching Approaches Correlation-Based, Multigrid, and Multi-

Scanline Stereo . 125
5.3.2 Accessing the Calibration Results . 126
5.3.3 Acquiring Stereo Images . 126
5.3.4 Rectifying the Stereo Images . 127
5.3.5 Reconstructing 3D Information . 130
5.3.6 Uncalibrated Stereo Vision . 138

5.4 Multi-View Stereo Vision . 139
5.4.1 Initializing the Stereo Model . 139
5.4.2 Reconstructing 3D Information . 141

6 Laser Triangulation with Sheet of Light 147
6.1 The Principle of Sheet of Light . 147
6.2 The Measurement Setup . 147
6.3 Calibrating the Sheet-of-Light Setup . 149

6.3.1 Calibrating the Sheet-of-Light Setup using a standard HALCON calibration plate 151
6.3.2 Calibrating the Sheet-of-Light Setup Using a Special 3D Calibration Object 154

6.4 Performing the Measurement . 157
6.4.1 Calibrated Sheet-of-Light Measurement . 157
6.4.2 Uncalibrated Sheet-of-Light Measurement . 159

6.5 Using the Score Image . 160
6.6 3D Cameras for Sheet of Light . 162

7 Depth from Focus 163
7.1 The Principle of Depth from Focus . 163

7.1.1 Speed vs. Accuracy . 165
7.2 Setup . 165

7.2.1 Camera . 165
7.2.2 Illumination . 168
7.2.3 Object . 169

7.3 Working with Depth from Focus . 170
7.3.1 Rules for Taking Images . 170
7.3.2 Practical Use of Depth from Focus . 171

7.3.3 Volume Measurement with Depth from Focus . 171
7.4 Solutions for Typical Problems With DFF . 172

7.4.1 Calibrating Aberration . 172
7.5 Special Cases . 173
7.6 Performing Depth from Focus with a Standard Lens . 174

8 Robot Vision 175
8.1 Supported Configurations . 175

8.1.1 Articulated Robot vs. SCARA Robot . 175
8.1.2 Camera and Calibration Plate vs. 3D Sensor and 3D Object 176
8.1.3 Moving Camera vs. Stationary Camera . 177
8.1.4 Calibrating the Camera in Advance vs. Calibrating It During Hand-Eye Calibration 177

8.2 The Principle of Hand-Eye Calibration . 177
8.3 Calibrating the Camera in Advance . 179
8.4 Preparing the Calibration Input Data . 179

8.4.1 Creating the Data Model . 180
8.4.2 Poses of the Calibration Object . 181
8.4.3 Poses of the Robot Tool . 182

8.5 Performing the Calibration . 183
8.6 Determine Translation in Z Direction for SCARA Robots . 184
8.7 Using the Calibration Data . 185

8.7.1 Using the Hand-Eye Calibration for Grasping (3D Alignment) 185
8.7.2 How to Get the 3D Pose of the Object . 186
8.7.3 Example Application with a Stationary Camera: Grasping a Nut 187

9 Calibrated Mosaicking 191
9.1 Setup . 191
9.2 Approach Using a Single Calibration Plate . 193

9.2.1 Calibration . 193
9.2.2 Mosaicking . 194

9.3 Approach Using Multiple Calibration Plates . 195
9.3.1 Calibration . 196
9.3.2 Merging the Individual Images into One Larger Image 197

10 Uncalibrated Mosaicking 205
10.1 Rules for Taking Images for a Mosaic Image . 207
10.2 Definition of Overlapping Image Pairs . 208
10.3 Detection of Characteristic Points . 212
10.4 Matching of Characteristic Points . 213
10.5 Generation of the Mosaic Image . 215
10.6 Bundle Adjusted Mosaicking . 215
10.7 Spherical Mosaicking . 216

11 Rectification of Arbitrary Distortions 219
11.1 Basic Principle . 220
11.2 Rules for Taking Images of the Rectification Grid . 222
11.3 Machine Vision on Ruled Surfaces . 223
11.4 Using Self-Defined Rectification Grids . 225

A HDevelop Procedures Used in this Solution Guide 231
A.1 gen_hom_mat3d_from_three_points . 231
A.2 parameters_image_to_world_plane_centered . 232
A.3 parameters_image_to_world_plane_entire . 232
A.4 tilt_correction . 233
A.5 calc_calplate_pose_movingcam . 233
A.6 calc_calplate_pose_stationarycam . 233
A.7 define_reference_coord_system . 234

Index 235

Introduction C-9

Chapter 1

Introduction

With HALCON you can perform 3D vision in various ways. The main applications comprise the 3D position
recognition and the 3D inspection, which both consist of several different approaches with different characteristics,
so that for a wide range of 3D vision tasks a proper solution can be provided. This Solution Guide provides you
with detailed information on the available approaches, including also some auxiliary methods that are needed only
in specific cases.

What Basic Knowledge Do You Need for 3D Vision?

Typically, you have to calibrate your camera(s) before applying a 3D vision task. Especially, if you want to achieve
accurate results, the camera calibration is essential, because it is of no use to extract edges with an accuracy of
1/40 pixel if the lens distortion of the uncalibrated camera accounts for a couple of pixels. This also applies if you
use cameras with telecentric lenses. But don’t be afraid of the calibration process: In HALCON, this can be done
with just a few lines of code. To prepare you for the camera calibration, chapter 2 on page 13 introduces you to the
details on the camera model and parameters. The actual camera calibration is then described in chapter 3 on page
59.

Using a camera calibration, you can transform image processing results into arbitrary 3D coordinate systems and
thus derive metrical information from images, regardless of the position and orientation of the camera with respect
to the object. In other words, you can perform inspection tasks in 3D coordinates in specified object planes, which
can be oriented arbitrarily with respect to the camera. This is, e.g., useful if the camera cannot be mounted such
that it looks perpendicular to the object surface. Thus, besides the pure camera calibration, chapter 3 shows how to
apply a general 3D vision task with a single camera in a specified plane. Additionally, it shows how to rectify
the images such that they appear as if they were acquired from a camera that has no lens distortions and that looks
exactly perpendicular onto the object surface. This is useful for tasks like OCR or the recognition and localization
of objects, which rely on images that are not distorted too much with respect to the training images.

Before you develop your application, we recommend to read chapter 2 and chapter 3 and then, depending on the
task at hand, to step into the section that describes the 3D vision approach you selected for your specific application.

How Can You Obtain an Object’s 3D Position and Orientation?

The position and orientation of 3D objects with respect to a given 3D coordinate system, which is needed, e.g., for
pick-and-place applications (3D alignment), can be determined by one of the methods described in chapter 4 on
page 91:

• The pose estimation of a known 3D object from corresponding points (section 4.1 on page 92) is a rather
general approach that includes a camera calibration and the extraction of at least three significant points for
which the 3D object coordinates are known. The approach is also known as “mono 3D”.

• HALCON’s 3D matching locates known 3D objects based on a 3D model of the object. In particular, it
automatically searches objects that correspond to a 3D model in the search data and determines their 3D
poses. The model must be provided, e.g., as a Computer Aided Design (CAD) model. Available approaches
are the shape-based 3D matching (section 4.2 on page 95) that searches the model in 2D images and the
surface-based 3D matching (section 4.3 on page 104) that searches the model in a 3D scene, i.e., in a set of
3D points that is available as 3D object model, which can be obtained by a 3D reconstruction approach like

In
tr

od
uc

tio
n

C-10 Introduction

stereo or sheet of light. Note that the surface-based matching is also known as “volume matching”, although
it only relies on points on the object’s surface.

• HALCON’s 3D primitives fitting (section 4.5 on page 111) fits a primitive 3D shape like a cylinder, sphere,
or plane into a 3D scene, i.e., into a set of 3D points that is available as a 3D object model, which can be
obtained by a 3D reconstruction approach like stereo or sheet of light followed by a 3D segmentation.

• The calibrated perspective matching locates perspectively distorted planar objects in images based on a 2D
model. In particular, it automatically searches objects that correspond to a 2D model in the search images and
determines their 3D poses. The model typically is obtained from a representative model image. Available
approaches are the calibrated perspective deformable matching (section 4.6 on page 114) that describes the
model by its contours and the calibrated descriptor-based matching (section 4.7 on page 114) that describes
the model by a set of distinctive points that are called “interest points”.

• The circle pose estimation (section 4.8 on page 115) and rectangle pose estimation (section 4.9 on page
116) use the perspective distortions of circles and rectangles to determine the pose of planar objects that
contain circles and/or rectangles in a rather convenient way.

How Can You Inspect a 3D Object?

The inspection of 3D objects can be applied by different means. If the inspection in a specified plane is sufficient,
you can use a camera calibration together with a 2D inspection as is described in chapter 3 on page 59.

If the surface of the 3D object is needed and/or the inspection can not be reduced to a single specified plane, you can
use a 3D reconstruction together with a 3D inspection. That is, you use the point, surface, or height information
returned for a 3D object by a 3D reconstruction and inspect the object, e.g., by comparing it to a reference point,
surface, or height.

Figure 1.1 provides you with an overview on the methods that are available for 3D position recognition and 3D
inspection. For an introduction to 3D object models, please refer to section 2.3 on page 38.

Planar Object Part
(Perspective View)

Measure Elements

and their Relations

Multiple

Cameras

Single Camera

additional Hardware)

(Multiple Images,

3D
Sensor

Photometric Stereo

TOF
etc.

Reconstruct

Surfaces

Shape−Based

3D Matching

Surface−Based
3D Matching

2D Inspection 3D Inspection

Calibration
Camera

Sheet of Light

Single Camera

(Specified Plane)

Fitting

3D Object

Model

(needed)

Calibrated
Descriptor−

Matching

Based

Calibrated
Perspective

Matching

Deformable
Depth from Focus

Stereo Vision

Pose from

Points

Circle Pose

Rectangle Pose

S
e

tu
p

U
n

c
a

lib
ra

te
d

C
a

lib
ra

te
d

3D Object

3D Primitives

O
b

je
c
ts

 w
it
h

 P
ri
m

it
iv

e
 S

h
a

p
e

s
A

rb
it
ra

ry
 O

b
je

c
ts

Recognition

3D Position3D

Inspection

3D Object Model (generated)

(section 4.2)

(section 4.7)

(section 4.6)

(section 3.2)

(chapter 6)

(chapter 3)

(chapter 7)

(chapter 5)

(section 4.1)

(section 4.5)

(section 4.3)

(section 4.8)

(section 4.9)

Figure 1.1: Overview to the main methods used for 3D Vision.

C-11

How Can You Reconstruct 3D Objects?

To determine points on the surface of arbitrary objects, the following approaches are available:

• HALCON’s stereo vision functionality (chapter 5 on page 117) allows to determine the 3D coordinates of
any point on the object surface based on two (binocular stereo) or more (multi-view stereo) images that are
acquired suitably from different points of view (typically by separate cameras). Using multi-view stereo,
you can reconstruct a 3D object in full 3D, in particular, you can reconstruct it from different sides.

• A laser triangulation with sheet of light (chapter 6 on page 147) allows to get a height profile of the object.
Note that besides a single camera, additional hardware, in particular a laser line projector and a unit that
moves the object relative to the camera and the laser, is needed.

• With depth from focus (DFF) (chapter 7 on page 163) a height profile can be obtained using images that are
acquired by a single telecentric camera but at different focus positions. In order to vary the focus position
additional hardware like a translation stage or linear piezo stage is required. Note that depending on the
direction in which the focus position is modified, the result corresponds either to a height image or to a
distance image. A height image contains the distances between a specific object or measure plane and the
object points, whereas the distance image typically contains the distances between the camera and the object
points. Both can be called also depth image or “Z image”.

• With photometric stereo (Reference Manual, chapter “3D Reconstruction . Photometric Stereo”) a height
image can be obtained using images that are acquired by a single telecentric camera but with at least three
different telecentric illumination sources for which the spatial relations to the camera must be known. Note
that the height image reflects only relative heights, i.e., with photometric stereo no calibrated 3D reconstruc-
tion is possible.

• Besides the 3D reconstruction approaches provided by HALCON, you can obtain 3D information also by
specific 3D sensors like time of flight (TOF) cameras or specific setups that use structured light. For more
information on the usage of structured light for deflectometry see Solution Guide I, chapter 8 on page 69.
These cameras typically are calibrated and return X, Y, and Z images.

Figure 1.2 allows to compare some important features of the different 3D reconstruction approaches like the
approach-specific result types.

3D Reconstruction Hardware Requirements Object Size Possible Results
Approach
Multi-View Stereo multiple cameras, approx. > 10 cm 3D object model or

calibration object X, Y, Z coordinates
Binocular Stereo two cameras, approx. > 10 cm X, Y, Z coordinates,

calibration object approach-specific
disparity image, or
Z image

Sheet of Light camera, object must fit onto 3D object model,
laser line projector, the moving unit X, Y, Z images, or
unit to move the object, approach-specific
and calibration object disparity image

Depth from Focus telecentric camera, approx. < 2cm Z image
hardware to variate
the focus position

Photometric Stereo telecentric camera, restricted by Z image
at least three telecentric field of view of
illumination sources telecentric lens

3D Sensors special camera like approx. 30cm-5m X, Y, Z images
calibrated TOF

Figure 1.2: 3D reconstruction: a coarse comparison.

In
tr

od
uc

tio
n

C-12 Introduction

How Can You Extend 3D Vision to Robot Vision?

A typical application area for 3D vision is robot vision, i.e., using the results of machine vision to command a
robot. In such applications you must perform an additional calibration: the so-called hand-eye calibration, which
determines the relation between camera and robot coordinates (chapter 8 on page 175). Again, this calibration
must be performed only once (offline). Its results allow you to quickly transform machine vision results from
camera into robot coordinates.

What Tasks May be Needed Additionally?

If the object that you want to inspect is too large to be covered by one image with the desired resolution, multiple
images, each covering only a part of the object, can be combined into one larger mosaic image. This can be done
either based on a calibrated camera setup with very high precision (chapter 9 on page 191) or highly automated for
arbitrary and even varying image configurations (chapter 10 on page 205).

If an image shows distortions that are different to the common perspective distortions or lens distortions, caused,
e.g., by a non-flat object surface, the so-called grid rectification can be applied to rectify the image (chapter 11 on
page 219).

Basics C-13

Chapter 2

Basics

2.1 3D Transformations and Poses

Before we start explaining how to perform 3D vision with HALCON, we take a closer look at some basic questions
regarding the use of 3D coordinates:

• How to describe the transformation (translation and rotation) of points and coordinate systems,

• how to describe the position and orientation of one coordinate system relative to another, and

• how to determine the coordinates of a point in different coordinate systems, i.e., how to transform coordinates
between coordinate systems.

In fact, all these tasks can be solved using one and the same means: homogeneous transformation matrices and
their more compact equivalent, 3D poses.

2.1.1 3D Coordinates

The position of a 3D point P is described by its three coordinates (xp, yp, zp). The coordinates can also be
interpreted as a 3D vector (indicated by a bold-face lower-case letter). The coordinate system in which the point
coordinates are given is indicated to the upper right of a vector or coordinate. For example, the coordinates of the
point P in the camera coordinate system (denoted by the letter c) and in the world coordinate system (denoted by
the letter w) would be written as:

pc =




xcp
ycp
zcp


 pw =




xwp
ywp
zwp




0
2
4

4
3.3
0

xc

z c

xc y c z c), ,(

p =c

cy z w

xw

yw

xw yw z w), ,(
World coordinate system

p =w
P

Camera coordinate system

Measurement plane

Figure 2.1: Coordinates of a point in two different coordinate systems.

B
as

ic
s

C-14 Basics

Figure 2.1 depicts an example point lying in a plane where measurements are to be performed and its coordinates
in the camera and world coordinate system, respectively.

2.1.2 Transformations using 3D Transformation Matrices

2.1.2.1 Translation

Translation of Points

In figure 2.2, our example point has been translated along the x-axis of the camera coordinate system.

1

1 2

2

0
2
4

4
2
4

4
0
0

xc y c z c), ,(

P

xc

z c

p = p =

cy

P
t =

Camera coordinate system

Figure 2.2: Translating a point.

The coordinates of the resulting point P2 can be calculated by adding two vectors, the coordinate vector p1 of the
point and the translation vector t:

p2 = p1 + t =




xp1 + xt
yp1 + yt
zp1 + zt


 (2.1)

Multiple translations are described by adding the translation vectors. This operation is commutative, i.e., the
sequence of the translations has no influence on the result.

Translation of Coordinate Systems

Coordinate systems can be translated just like points. In the example in figure 2.3, the coordinate system c1 is
translated to form a second coordinate system, c2. Then, the position of c2 in c1, i.e., the coordinate vector of its
origin relative to c1 (oc1

c2), is identical to the translation vector:

tc1 = oc1
c2 (2.2)

Coordinate Transformations

Let’s turn to the question how to transform point coordinates between (translated) coordinate systems. In fact,
the translation of a point can also be thought of as translating it together with its local coordinate system. This is
depicted in figure 2.3: The coordinate system c1, together with the point Q1, is translated by the vector t, resulting
in the coordinate system c2 and the point Q2. The points Q1 and Q2 then have the same coordinates relative to
their local coordinate system, i.e., qc1

1 = qc2
2 .

If coordinate systems are only translated relative to each other, coordinates can be transformed very easily between
them by adding the translation vector:

qc1
2 = qc2

2 + tc1 = qc2
2 + oc1

c2 (2.3)

2.1 3D Transformations and Poses C-15

1

2

2

1

2

2
0
2

0
0
4

2
0
6

0
0
4

c1y
xc2

xc1

z c1

z c2

,y c1 z c1)xc1,(
Coordinate system 1

xc2 y c2 z c2,),(
Coordinate system 2

c2y

t =

q =c1

q =c1
q =c2

Q

Q

Figure 2.3: Translating a coordinate system (and point).

In fact, figure 2.3 visualizes this equation: qc1
2 , i.e., the coordinate vector of Q2 in the coordinate system c1, is

composed by adding the translation vector t and the coordinate vector of Q2 in the coordinate system c2 (qc2
2).

The downside of this graphical notation is that, at first glance, the direction of the translation vector appears to be
contrary to the direction of the coordinate transformation: The vector points from the coordinate system c1 to c2,
but transforms coordinates from the coordinate system c2 to c1. According to this, the coordinates of Q1 in the
coordinate system c2, i.e., the inverse transformation, can be obtained by subtracting the translation vector from
the coordinates of Q1 in the coordinate system c1:

qc2
1 = qc1

1 − tc1 = qc1
1 − oc1

c2 (2.4)

Summary

• Points are translated by adding the translation vector to their coordinate vector. Analogously, coordinate
systems are translated by adding the translation vector to the position (coordinate vector) of their origin.

• To transform point coordinates from a translated coordinate system c2 into the original coordinate system c1,
you apply the same transformation to the points that was applied to the coordinate system, i.e., you add the
translation vector used to translate the coordinate system c1 into c2.

• Multiple translations are described by adding all translation vectors; the sequence of the translations does
not affect the result.

2.1.2.2 Rotation

Rotation of Points

In figure 2.4a, the point p1 is rotated by −90◦ around the z-axis of the camera coordinate system.

Rotating a point is expressed by multiplying its coordinate vector with a 3×3 rotation matrix R. A rotation around
the z-axis looks as follows:

p3 = Rz(γ) · p1 =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 ·




xp1
yp1
zp1


 =




cos γ · xp1 − sin γ · yp1
sin γ · xp1 + cos γ · yp1

zp1


 (2.5)

Rotations around the x- and y-axis correspond to the following rotation matrices:

Ry(β) =




cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


 Rx(α) =




1 0 0
0 cosα − sinα
0 sinα cosα


 (2.6)

B
as

ic
s

C-16 Basics

3

z

1
3

1
3

y

4
4

31 1

0
2
4

0
2
4

2
0
4

−2
0
4

2
0
4

z c

P

R (−90°)

p =

z c

Pp =
p =

R (90°)
xc

p = P

p =

cy

cx

cy

P P

a) first rotation b) second rotation

Figure 2.4: Rotate a point: (a) first around the zc-axis; (b) then around the yc-axis.

Chain of Rotations

In figure 2.4b, the rotated point is further rotated around the y-axis. Such a chain of rotations can be expressed
very elegantly by a chain of rotation matrices:

p4 = Ry(β) · p3 = Ry(β) ·Rz(γ) · p1 (2.7)

Note that in contrast to a multiplication of scalars, the multiplication of matrices is not commutative, i.e., if you
change the sequence of the rotation matrices, you get a different result.

Rotation of Coordinate Systems

In contrast to points, coordinate systems have an orientation relative to other coordinates systems. This orientation
changes when the coordinate system is rotated. For example, in figure 2.5a the coordinate system c3 has been
rotated around the y-axis of the coordinate system c1, resulting in a different orientation of the camera. Note that
in order to rotate a coordinate system in your mind’s eye, it may help to image the points of the axis vectors being
rotated.

1

1

y z

1

1

3

3

3

4

4

34

0
0
4

0
0
4

0
0
4

4
0
0

0
0
4

4
0
0

,y c1 z c1)xc1,(
Coordinate system 1

xc3 y c3 z c3,),(
Coordinate system 3

xc4xc3

xc4 y c4 z c4,),(
Coordinate system 4

xc3

z c1

xc1

z c3

Q
q =c1

R (90°) R (−90°)

Q
q =c1

c4y

z c1

q =c3

Q

q =c1

z c4

z c3

c1y

c3y
c1y

c3y q =c4

q =c1

QQ =

a) first rotation b) second rotation

Figure 2.5: Rotate coordinate system: (a) first around the yc1-axis; (b) then around the zc3-axis.

2.1 3D Transformations and Poses C-17

Just like the position of a coordinate system can be expressed directly by the translation vector (see equation 2.2
on page 14), the orientation is contained in the rotation matrix: The columns of the rotation matrix correspond to
the axis vectors of the rotated coordinate system in coordinates of the original one:

R =
[
xc1
c3 yc1

c3 zc1c3
]

(2.8)

For example, the axis vectors of the coordinate system c3 in figure 2.5a can be determined from the corresponding
rotation matrix Ry(90◦) as shown in the following equation; you can easily check the result in the figure.

Ry(90◦) =




cos(90◦) 0 sin(90◦)
0 1 0

− sin(90◦) 0 cos(90◦)


 =




0 0 1
0 1 0
−1 0 0




⇒ xc1
c3 =




0
0
−1


 yc1

c3 =




0
1
0


 zc1c3 =




1
0
0




Coordinate Transformations

Like in the case of translation, to transform point coordinates from a rotated coordinate system c3 into the original
coordinate system c1, you apply the same transformation to the points that was applied to the coordinate system
c3, i.e., you multiply the point coordinates with the rotation matrix used to rotate the coordinate system c1 into c3:

qc1
3 = c1Rc3 ·qc3

3 (2.9)

This is depicted in figure 2.5 also for a chain of rotations, which corresponds to the following equation:

qc1
4 = c1Rc3 · c3Rc4 ·qc4

4 = Ry(β) ·Rz(γ) · qc4
4 = c1Rc4 ·qc4

4 (2.10)

In Which Sequence and Around Which Axes are Rotations Performed?

If you compare the chains of rotations in figure 2.4 and figure 2.5 and the corresponding equations 2.7 and 2.10,
you will note that two different sequences of rotations are described by the same chain of rotation matrices: In
figure 2.4, the point was rotated first around the z-axis and then around the y-axis, whereas in figure 2.5 the
coordinate system is rotated first around the y-axis and then around the z-axis. Yet, both are described by the chain
Ry(β) ·Rz(γ)!

The solution to this seemingly paradox situation is that in the two examples the chain of rotation matrices can be
“read” in different directions: In figure 2.4 it is read from the right to left, and in figure 2.5 from left to the right.

However, there still must be a difference between the two sequences because, as we already mentioned, the mul-
tiplication of rotation matrices is not commutative. This difference lies in the second question in the title, i.e.,
around which axes the rotations are performed.

Let’s start with the second rotation of the coordinate system in figure 2.5b. Here, there are two possible sets of
axes to rotate around: those of the “old” coordinate system c1 and those of the already rotated, “new” coordinate
system c3. In the example, the second rotation is performed around the “new” z-axis.

In contrast, when rotating points as in figure 2.4, there is only one set of axes around which to rotate: those of the
“old” coordinate system.

From this, we derive the following rules:

• When reading a chain from the left to right, rotations are performed around the “new” axes.

• When reading a chain from the right to left, rotations are performed around the “old” axes.

As already remarked, point rotation chains are always read from right to left. In the case of coordinate systems,
you have the choice how to read a rotation chain. In most cases, however, it is more intuitive to read them from
left to right.

Figure 2.6 shows that the two reading directions really yield the same result.

B
as

ic
s

C-18 Basics

Summary

• Points are rotated by multiplying their coordinate vector with a rotation matrix.

• If you rotate a coordinate system, the rotation matrix describes its resulting orientation: The column vectors
of the matrix correspond to the axis vectors of the rotated coordinate system in coordinates of the original
one.

• To transform point coordinates from a rotated coordinate system c3 into the original coordinate system c1,
you apply the same transformation to the points that was applied to the coordinate system, i.e., you multiply
them with the rotation matrix that was used to rotate the coordinate system c1 into c3.

• Multiple rotations are described by a chain of rotation matrices, which can be read in two directions. When
read from left to right, rotations are performed around the “new” axes; when read from right to left, the
rotations are performed around the “old” axes.

2.1.3 Rigid Transformations using Homogeneous Transformation Matrices

Rigid Transformation of Points

If you combine translation and rotation, you get a so-called rigid transformation. For example, in figure 2.7, the
translation and rotation of the point from figures 2.2 and 2.4 are combined. Such a transformation is described as
follows:

p5 = R ·p1 + t (2.11)

For multiple transformations, such equations quickly become confusing, as the following example with two trans-
formations shows:

p6 = Ra ·(Rb ·p1 + tb) + ta = Ra ·Rb ·p1 + Ra ·tb + ta (2.12)

An elegant alternative is to use so-called homogeneous transformation matrices and the corresponding homoge-
neous vectors. A homogeneous transformation matrix H contains both the rotation matrix and the translation
vector. For example, the rigid transformation from equation 2.11 can be rewritten as follows:

(
p5

1

)
=

[
R t

0 0 0 1

]
·
(

p1

1

)
=

(
R ·p1 + t

1

)
= H ·

(
p1

1

)
(2.13)

The usefulness of this notation becomes apparent when dealing with sequences of rigid transformations, which can
be expressed as chains of homogeneous transformation matrices, similarly to the rotation chains:

H1 ·H2 =

[
Ra ta

0 0 0 1

]
·
[

Rb tb

0 0 0 1

]
=

[
Ra ·Rb Ra ·tb + ta

0 0 0 1

]
(2.14)

y z

y

z y

z

R (90°) R (−90°)*

xc1

c4y xc4

z c4

R (90°)c1

c1y c3’y

z c3’

xc3’

z c1

c1y

c4y xc4

z c4

R (−90°)c1

c1y

R (90°)c1

xc1

xc3

c3y

z c1 z c3

Performing a chain of rotations:

a) reading from left to right = rotating around "new" axes

R (−90°)c3’

b) reading from right to left = rotating around "old" axes

Figure 2.6: Performing a chain of rotations (a) from left to the right, or (b) from right to left.

2.1 3D Transformations and Poses C-19

z

5

3

3

1

4 4

y

5

1

4
0
0

2
0
4

0
2
4

−2
0
4

−2
0
8

z c

xc
cy

R (−90°)

t =
P

P
p =

p =

p = P

R (90°)

p =

P

Figure 2.7: Combining the translation from figure 2.2 on page 14 and the rotation of figure 2.4 on page 16 to form a
rigid transformation.

As explained for chains of rotations, chains of rigid transformation can be read in two directions. When reading
from left to right, the transformations are performed around the “new” axes, when read from right to left around
the “old” axes.

In fact, a rigid transformation is already a chain, since it consists of a translation and a rotation:

H =

[
R t

0 0 0 1

]
=




1 0 0
0 1 0
0 0 1

t

0 0 0 1


 ·




R
0
0
0

0 0 0 1


 = H(t) ·H(R) (2.15)

If the rotation is composed of multiple rotations around axes as in figure 2.7, the individual rotations can also be
written as homogeneous transformation matrices:

H =

[
Ry(β) ·Rz(γ) t

0 0 0 1

]
=




1 0 0
0 1 0
0 0 1

t

0 0 0 1


 ·




Ry(β)
0
0
0

0 0 0 1


 ·




Rz(γ)
0
0
0

0 0 0 1




Reading this chain from right to left, you can follow the transformation of the point in figure 2.7: First, it is rotated
around the z-axis, then around the (“old”) y-axis, and finally it is translated.

Rigid Transformation of Coordinate Systems

Rigid transformations of coordinate systems work along the same lines as described for a separate translation
and rotation. This means that the homogeneous transformation matrix c1Hc5 describes the transformation of the
coordinate system c1 into the coordinate system c5. At the same time, it describes the position and orientation
of coordinate system c5 relative to coordinate system c1: Its column vectors contain the coordinates of the axis
vectors and the origin.

c1Hc5 =

[
xc1
c5 yc1

c5 zc1c5 oc1
c5

0 0 0 1

]
(2.16)

As already noted for rotations, chains of rigid transformations of coordinate systems are typically read from left to
right. Thus, the chain above can be read as first translating the coordinate system, then rotating it around its “new”
y-axis, and finally rotating it around its “newest” z-axis.

B
as

ic
s

C-20 Basics

Coordinate Transformations

As described for the separate translation and the rotation, to transform point coordinates from a rigidly transformed
coordinate system c5 into the original coordinate system c1, you apply the same transformation to the points that
was applied to the coordinate system c5, i.e., you multiply the point coordinates with the homogeneous transfor-
mation matrix: (

pc1
5

1

)
= c1Hc5 ·

(
pc5
5

1

)
(2.17)

Typically, you leave out the homogeneous vectors if there is no danger of confusion and simply write:

pc1
5 = c1Hc5 ·pc5

5 (2.18)

Summary

• Rigid transformations consist of a rotation and a translation. They are described very elegantly by homoge-
neous transformation matrices, which contain both the rotation matrix and the translation vector.

• Points are transformed by multiplying their coordinate vector with the homogeneous transformation matrix.

• If you transform a coordinate system, the homogeneous transformation matrix describes the coordinate sys-
tem’s resulting position and orientation: The column vectors of the matrix correspond to the axis vectors and
the origin of the coordinate system in coordinates of the original one. Thus, you could say that a homoge-
neous transformation matrix “is” the position and orientation of a coordinate system.

• To transform point coordinates from a rigidly transformed coordinate system c5 into the original coordinate
system c1, you apply the same transformation to the points that was applied to the coordinate system, i.e.,
you multiply them with the homogeneous transformation matrix that was used to transform the coordinate
system c1 into c5.

• Multiple rigid transformations are described by a chain of transformation matrices, which can be read in two
directions. When read from left to the right, rotations are performed around the “new” axes; when read from
the right to left, the transformations are performed around the “old” axes.

HALCON Operators

As we already anticipated at the beginning of section 2.1 on page 13, homogeneous transformation matrices are
the answer to all our questions regarding the use of 3D coordinates. Because of this, they form the basis for
HALCON’s operators for 3D transformations. Below, you find a brief overview of the relevant operators. For
more details follow the links into the Reference Manual.

• hom_mat3d_identity creates the identity transformation

• hom_mat3d_translate translates along the “old” axes: H2 = H(t) ·H1

• hom_mat3d_translate_local translates along the “new” axes: H2 = H1 ·H(t)

• hom_mat3d_rotate rotates around the “old” axes: H2 = H(R) ·H1

• hom_mat3d_rotate_local rotates around the “new” axes: H2 = H1 ·H(R)

• hom_mat3d_compose multiplies two transformation matrices: H3 = H1 ·H2

• hom_mat3d_invert inverts a transformation matrix: H2 = H1
-1

• affine_trans_point_3d transforms a point using a transformation matrix: p2 = H0 ·p1

2.1.4 Transformations using 3D Poses

Homogeneous transformation matrices are a very elegant means of describing transformations, but their content,
i.e., the elements of the matrix, are often difficult to read, especially the rotation part. This problem is alleviated
by using so-called 3D poses.

A 3D pose is nothing more than an easier-to-understand representation of a rigid transformation: Instead of the 12
elements of the homogeneous transformation matrix, a pose describes the rigid transformation with 6 parameters,
3 for the rotation and 3 for the translation: (TransX, TransY, TransZ, RotX, RotY, RotZ). The main principle

2.1 3D Transformations and Poses C-21

behind poses is that even a rotation around an arbitrary axis can always be represented by a sequence of three
rotations around the axes of a coordinate system.

In HALCON, you create 3D poses with create_pose; to transform between poses and homogeneous matrices
you can use hom_mat3d_to_pose and pose_to_hom_mat3d.

2.1.4.1 Sequence of Rotations

However, there is more than one way to represent an arbitrary rotation by three parameters. This is reflected by
the HALCON operator create_pose, which lets you choose between different pose types with the parameter
OrderOfRotation. If you pass the value ’gba’, the rotation is described by the following chain of rotations:

Rgba = Rx(RotX) ·Ry(RotY) ·Rz(RotZ) (2.19)

You may also choose the inverse order by passing the value ’abg’:

Rabg = Rz(RotZ) ·Ry(RotY) ·Rx(RotX) (2.20)

For example, the transformation discussed in the previous sections can be represented by the homogeneous trans-
formation matrix

H =

[
Ry(β) ·Rz(γ) t

0 0 0 1

]
=




cosβ · cos γ − cosβ · sin γ sinβ xt
sin γ cos γ 0 yt

− sinβ · cos γ sinβ · sin γ cosβ zt
0 0 0 1




The corresponding pose with the rotation order ’gba’ is much easier to read:

(TransX = xt, TransY = yt, TransZ = zt, RotX = 0, RotY = 90◦, RotZ = −90◦)

If you look closely at figure 2.5 on page 16, you can see that the rotation can also be described by the sequence
Rz(−90◦) · Rx(−90◦). Thus, the transformation can also be described by the following pose with the rotation
order ’abg’:

(TransX = xt, TransY = yt, TransZ = zt, RotX = −90◦, RotY = 0, RotZ = −90◦)

HALCON Operators

Below, the relevant HALCON operators for dealing with 3D poses are briefly described. For more details follow
the links into the Reference Manual.

• create_pose creates a pose

• hom_mat3d_to_pose converts a homogeneous transformation matrix into a pose

• pose_to_hom_mat3d converts a pose into a homogeneous transformation matrix

• convert_pose_type changes the pose type

• write_pose writes a pose into a file

• read_pose reads a pose from a file

• set_origin_pose translates a pose along its “new” axes

• pose_invert inverts a pose

• pose_compose multiplies two poses, i.e., it sequentially applies two transformations (poses)

B
as

ic
s

C-22 Basics

y

z w=c

xw=c

yw=c

4
−1.3

4

xc

z c

cy

xw

z w

yw

xc y c z c), ,(
t =

, ,(xc’ y c’ z c’)

xc

z c

cy

xw

c’y

z w

yw

xc’

c’z

xw yw z w), ,(
R (180°)c’

xc

z c

cy

P =
c

w (4, −1.3, 4, 0, 180°, 0)

Camera coordinate system Intermediate coordinate system World coordinate system

Figure 2.8: Determining the pose of the world coordinate system in camera coordinates.

2.1.4.2 How to Determine the Pose of a Coordinate System

The previous sections showed how to describe known transformations using translation vectors, rotation matrices,
homogeneous transformation matrices, or poses. Sometimes, however, there is another task: How to describe the
position and orientation of a coordinate system with a pose.

Figure 2.8 shows how to proceed for a rather simple example. The task is to determine the pose of the world
coordinate system from figure 2.1 on page 13 relative to the camera coordinate system.

In such a case, we recommend to build up the rigid transformation from individual translations and rotations from
left to right. Thus, in figure 2.8 the camera coordinate system is first translated such that its origin coincides with
that of the world coordinate system. Now, the y-axes of the two coordinate systems coincide; after rotating the
(translated) camera coordinate system around its (new) y-axis by 180◦, it has the correct orientation.

2.1.5 Transformations using Dual Quaternions and Plücker Coordinates

2.1.5.1 Dual Quaternions

In contrast to unit quaternions, which are able to represent 3D rotations, a unit dual quaternion is able to repre-
sent a full 3D rigid transformation, i.e., a 3D rotation and a 3D translation. Hence, unit dual quaternions are an
alternative representation to 3D poses and 3D homogeneous transformation matrices for 3D rigid transformations.
In comparison to transformation matrices with 12 elements, dual quaternions with 8 elements are a more compact
representation. Similar to transformation matrices, dual quaternions can be combined easily to concatenate multi-
ple transformations. Furthermore, they allow a smooth interpolation between two 3D rigid transformations and an
efficient transformation of 3D lines.

A dual quaternion q̂ = qr + ε ∗ qd consists of the two quaternions qr and qd, where qr is the real part, qd is the dual
part, and ε is the dual unit number (ε2 = 0). Each quaternion q = w + ix+ jy + kz consists of the scalar part w
and the vector part v = (x, y, z), where (1, i, j, k) are the basis elements of the quaternion vector space.

In HALCON, a dual quaternion is represented by a tuple with eight values [wr, xr, yr, zr, wd, xd, yd, zd], where
wr and vr = (xr, yr, zr) are the scalar and the vector part of the real part and wd and vd = (xd, yd, zd) are the
scalar and the vector part of the dual part.

Each 3D rigid transformation can be represented as a screw (see figure 2.9 and figure 2.10):

The parameters that fully describe the screw are:

• screw angle θ

• screw translation d

• direction L = (Lx ,Ly ,Lz)T of the screw axis with ||L|| = 1

• moment M = (Mx ,My ,Mz)T of the screw axis with L ∗M = 0

2.1 3D Transformations and Poses C-23

(L,M)

d
θ

(L,M)

a) b)

Figure 2.9: a) A 3D rigid transformation defined by a rotation and a translation... b) can be represented as a screw.

(L,M)

P0

y

x
P1

L=P1-P0

M

z

L

Figure 2.10: Moment M of the screw axis.

A screw is composed of a rotation about the screw axis given by L and M by the angle θ and a translation by d
along this axis. The position of the screw axis is defined by its moment with respect to the origin of the coordinate
system. M is a vector that is perpendicular to the direction of the screw axis L and perpendicular to a vector from
the origin to a point P0 on the screw axis. It is calculated by the vector product M = P0 × L.

Hence, M is the normal vector of the plane that is spanned by the screw axis and the origin. Note that P0 = L×M
is the point on the screw axis (L,M) with the shortest distance to the origin of the coordinate system. The elements
of a unit dual quaternion are related to the screw parameters of the 3D rigid transformation as:

q̂ =

(
cos θ2
Lsin θ2

)
+ ε

(−d
2 sin

θ
2

Msin θ2 + Ld2cos
θ
2

)
(2.21)

Note that q̂ and −q̂ represent the same 3D rigid transformation. Further note that the inverse of a unit dual
quaternion is its conjugate, i.e., q̂−1 = ¯̂q.

The conjugation of a dual quaternion q̂ = qr + εqd is given by ¯̂q = q̄r + εq̄d, where q̄r and q̄d are the conjugations
of the quaternions qr and qd.

The conjugation of a quaternion q = x0 + x1i+ x2j + x3k is given by q̄ = x0 − x1i− x2j − x3k.

HALCON Operators

• pose_to_dual_quat converts a 3D pose to a unit dual quaternion

B
as

ic
s

C-24 Basics

• dual_quat_to_pose converts a dual quaternion to a 3D pose

• dual_quat_compose multiplies two dual quaternions

• dual_quat_interpolate interpolates between two dual quaternions

• dual_quat_to_screw converts a unit dual quaternion into a screw

• screw_to_dual_quat converts a screw into a dual quaternion

• dual_quat_to_hom_mat3d converts a unit dual quaternion into a homogeneous transformation matrix

• dual_quat_trans_line_3d transforms a 3D line with a unit dual quaternion

• dual_quat_trans_point_3d transforms a 3D point with a unit dual quaternion

• dual_quat_conjugate conjugates a dual quaternion

• dual_quat_normalize normalizes a dual quaternion

• serialize_dual_quat serializes a dual quaternion

• deserialize_dual_quat deserializes a serialized dual quaternion

2.1.5.2 3D lines and Plücker Coordinates

Plücker coordinates are a very useful representation of lines in 3D space.

A line in 3D space, as shown in figure 2.11, can be described by two points P0 and P1. However, this usage of
arbitrary points comes with the disadvantage that the same line can be described in multiple ways.
Another approach is to take the unit line direction L and the line moment M. M is a vector that is perpendicular to
the plane spanned by the origin, a point on the line, and the line direction L. L and M define the line independent
of the arbitrary line points. The six parameters of L and M are called the Plücker coordinates of the line.

From its definition, it holds that ‖L‖ = 1 and L ·M = 0, where · denotes the dot product of two vectors.

(L,M)

P0

y

x
P1

L=P1-P0

M

z

L

Figure 2.11: A line in 3D space and its components.

Using Plücker coordinates, it is very simple and efficient to compute the distance D of a point P to a line: D =
‖P× L−M‖.

HALCON Operators

• distance_point_pluecker_line Calculate the distance between a 3D point and a 3D line given by
Plücker coordinates.

• pluecker_line_to_point_direction Convert a 3D line given by Plücker coordinates to a 3D line given
by a point and a direction.

2.2 Camera Model and Parameters C-25

• pluecker_line_to_points Convert a 3D line given by Plücker coordinates to a 3D line given by two
points.

• point_direction_to_pluecker_line Convert a 3D line given by a point and a direction to Plücker
coordinates.

• points_to_pluecker_line Convert a 3D line given by two points to Plücker coordinates.

• point_pluecker_line_to_hom_mat3d Approximate a 3D affine transformation from 3D point-to-line
correspondences.

2.1.5.3 Dual Quaternions and Plücker Coordinates

Plücker lines can be transformed efficiently with rigid transformations using dual quaternions.

Lines in 3D can be represented by dual unit vectors. A dual unit vector can be interpreted as a dual quaternion
with 0 scalar part. The 3D rigid transformation that is represented by a unit dual quaternion is easily related to the
corresponding screw around a screw axis. As described in section 2.1.5.1 on page 22, the screw axis is defined by
its direction L with ‖L‖ = 1 and its moment M. But L and M are exactly the Plücker coordinates introduced in
section 2.1.5.2 on page 24.

Consequently, a line l̂ can be represented by a dual quaternion with 0 scalar part by

l̂ = lr + εld =




0
Lx
Ly
Lz


+ ε




0
Mx

My

Mz


 .

The line l̂ can be transformed by the 3D rigid transformation that is represented by the unit dual quaternion q̂ very
conveniently:

k̂ = q̂l̂¯̂q

The resulting dual quaternion k̂ also has 0 scalar part and directly contains the direction and the moment of the
transformed line in its vector part.

2.2 Camera Model and Parameters

If you want to derive accurate world coordinates from your imagery, you first have to calibrate your camera. To
calibrate a camera, a model for the mapping of the 3D points of the world to the 2D image generated by the camera,
lens, and frame grabber is necessary.

HALCON supports the calibration of two different kinds of cameras: area scan cameras and line scan cameras.
While area scan cameras acquire the image in one step, line scan cameras generate the image line by line (see
Solution Guide II-A, section 6.6 on page 39). Therefore, the line scan camera must move relative to the object
during the acquisition process.

Two different types of lenses are relevant for machine vision tasks. The first type of lens effects a perspective
projection of the world coordinates into the image, just like the human eye does. With this type of lens, objects
become smaller in the image the farther they are away from the camera. This combination of camera and lens is
called a pinhole camera model because the perspective projection can also be achieved if a small hole is drilled in
a thin planar object and this plane is held parallel in front of another plane (the image plane).

The second type of lens that is relevant for machine vision is called a telecentric lens. Its major difference is that it
effects a parallel projection of the world coordinates onto the image plane (for a certain range of distances of the
object from the camera). This means that objects have the same size in the image independent of their distance to
the camera. This combination of camera and lens is called a telecentric camera model.

The distinct types of camera use different parameters. An overview of the units used in HALCON for the different
camera parameters is given in chapter “Calibration . Multi-View”.

In the following, after a short overview, first the camera model for area scan cameras is described in detail, then,
the camera model for line scan cameras is explained.

B
as

ic
s

C-26 Basics

2.2.1 Map 3D World Points to Pixel Coordinates

To transform a 3D point pw = (xw ,yw , zw)T , which is given in world coordinates, into a 2D point qi = (r, c)T ,
which is given in pixel coordinates, a chain of transformations is needed:

pw → pc → qc → q̃c
[
→ qt

]
→ qi (2.22)

First, pw is transformed into the camera coordinate system into pc . Then, pc is projected into the image plane,
i.e., converted to the 2D point qc , still in metric coordinates. Then, lens distortion is applied to qc , transforming
it into the distorted point q̃c . If a tilt lens is used, q̃c only lies on a virtual image plane of a system without tilt.
This is corrected by projecting q̃c to the point qt on the tilted image plane. Finally, the coordinates of the distorted
point q̃c (or qt) are converted to pixel coordinates, which results in the final point qi .

2.2.2 Area Scan Cameras

Figure 2.12 displays the perspective projection effected by a pinhole camera graphically. The world point P is
projected through the optical center of the lens to the point P ′ in the image plane, which is located at a distance
of f (the focal length) behind the optical center. Actually, the term “focal length” is not quite correct and would
be appropriate only for an infinite object distance. To simplify matters, in the following always the term “focal
length” is used even if the “image distance” is meant. Note that the focal length and thus the focus must not be
changed after applying the camera calibration.

Although the image plane in reality lies behind the optical center of the lens, it is easier to pretend that it lies at a
distance of f in front of the optical center, as shown in figure 2.13. This causes the image coordinate system to be
aligned with the pixel coordinate system (row coordinates increase downward and column coordinates to the right)
and simplifies most calculations.

2.2.2.1 Transformation into Camera Coordinates (External Camera Parameters)

With this, we are now ready to describe the projection of objects in 3D world coordinates to the 2D image plane
and the corresponding camera parameters. First, we should note that the points P are given in a world coordinate
system (WCS). To make the projection into the image plane possible, they need to be transformed into the camera
coordinate system (CCS). The CCS is defined so that its x and y axes are parallel to the column and row axes of
the image, respectively, and the z axis is perpendicular to the image plane.

The transformation from the WCS to the CCS is a rigid transformation, which can be expressed by a pose or, equiv-
alently, by the homogeneous transformation matrix cHw . Therefore, the camera coordinates pc = (xc ,yc , zc)T

of point P can be calculated from its world coordinates pw = (xw ,yw , zw)T simply by

pc = cHw ·pw (2.23)

The six parameters of this transformation (the three translations tx, ty , and tz and the three rotations α, β, and γ)
are called the external camera parameters because they determine the position of the camera with respect to the
world. In HALCON, they are stored as a pose, i.e., together with a code that describes the order of translation and
rotations.

2.2.2.2 Projection

The next step is the projection of the 3D point given in the CCS into the image plane coordinate system (IPCS).
For the pinhole camera model, the projection is a perspective projection, which is given by

qc =

(
u

v

)
=

f

zc

(
xc

yc

)
(2.24)

For cameras with hypercentric lenses, the following equation holds instead:

qc =

(
u

v

)
=
−f
zc

(
xc

yc

)
(2.25)

2.2 Camera Model and Parameters C-27

xS

y c

z c

xc
xc y c z c), ,(Camera coordinate system

xw yw z w

u v(,)Image plane coordinate system
r c(),Image coordinate system

yw

xw

z w

P’

r

v

u
c

f

P

Sy

CCD chip

optical center
Camera with

World coordinate system), ,(

Cx

Cy

Figure 2.12: Perspective projection by a pinhole camera.

For the telecentric camera model, the projection is a parallel projection, which is given by

qc =

(
u

v

)
= m

(
xc

yc

)
(2.26)

where m = magnification. As can be seen, the distance z of the object to the camera has no influence on the image
coordinates.

B
as

ic
s

C-28 Basics

Sx

Sy

y c

z c

xc
xc y c z c), ,(Camera coordinate system

xw yw z wWorld coordinate system), ,(

r c(),Image coordinate system
u v,)(Image plane coordinate system

yw

xw

z w

f

P

c

r

v

u

optical center
Camera with

Virtual image plane

P’

y

C

C

x

Figure 2.13: Image plane and virtual image plane.

2.2.2.3 Lens Distortion

After the projection into the image plane, the lens distortion modifies the coordinates (u, v)T of qc to q̃c = (ũ, ṽ)T .
The effect is illustrated in figure 2.14: If no lens distortion were present, the projected point P ′ would lie on a
straight line from P through the optical center, indicated by the dotted line in figure 2.14. Lens distortions cause
the point P ′ to lie at a different position.

The lens distortion is a transformation that can be modeled in the image plane alone, i.e., 3D information is
unnecessary. In HALCON, the distortions can be modeled either by the division model or by the polynomial
model.

The division model uses one parameter (κ) to model the radial distortions. The following equations transform the
distorted image plane coordinates into undistorted image plane coordinates if the division model is used:

u =
ũ

1 + κ(ũ2 + ṽ2)
(2.27)

v =
ṽ

1 + κ(ũ2 + ṽ2)

2.2 Camera Model and Parameters C-29

Optical center

P

f

P’
CCD chip

Figure 2.14: Schematic illustration of the effect of the lens distortion.

These equations can be inverted analytically, which leads to the following equations that transform undistorted
coordinates into distorted coordinates if the division model is used:

ũ =
2u

1 +
√

1− 4κ(u2 + v2)
(2.28)

ṽ =
2v

1 +
√

1− 4κ(u2 + v2)

Figure 2.15: Effect of radial distortions modeled with the division model with κ > 0 (left), κ = 0 (middle), and κ < 0
(right).

The parameter κ models the magnitude of the radial distortions. If κ is negative, the distortion is barrel-shaped,
while for positive κ it is pincushion-shaped (see figure 2.15).

The polynomial model uses three parameters (K1,K2,K3) to model the radial distortions, and two parameters (
P1, P2) to model the decentering distortions. The following equations transform the distorted image plane coordi-
nates into undistorted image plane coordinates if the polynomial model is used:

u = ũ+ ũ(K1r
2 +K2r

4 +K3r
6) + P1(r2 + 2ũ2) + 2P2ũṽ (2.29)

v = ṽ + ṽ(K1r
2 +K2r

4 +K3r
6) + 2P1ũṽ + P2(r2 + 2ṽ2)

with r =
√
ũ2 + ṽ2. These equations cannot be inverted analytically. Therefore, distorted image plane coordinates

must be calculated from undistorted image plane coordinates numerically.

Some examples for the kind of distortions that can be modeled with the polynomial model are shown in figure 2.16.

B
as

ic
s

C-30 Basics

(a) (b) (c)

(d) (e) (f)

K1 K2 K3 P1 P2

(a) < 0 0 0 0 0
(b) < 0 > 0 0 0 0
(c) < 0 > 0 < 0 0 0
(d) < 0 0 0 < 0 0
(e) < 0 0 0 < 0 > 0
(f) < 0 > 0 < 0 < 0 > 0

Figure 2.16: Effect of distortions modeled with the polynomial model with different values for the parameters K1,
K2, K3, P1, and P2.

2.2.2.4 Tilt Lenses

If the lens is a tilt lens, the tilt of the lens with respect to the image plane is described by two parameters: The
rotation angle ρ (0◦ ≤ ρ < 360◦), which describes the direction of the tilt axis, and the tilt angle τ(0◦ ≤ τ < 90◦),
by which the sensor plane is tilted with respect to the optical axis (see figure 2.17).

For tilt lenses, different camera models are available, as they can have different geometries (see figure 2.18). Note
further, that different results are obtained with different angles of incidence.

For projective tilt lenses and object-side telecentric tilt lenses, the projection of q̃c = (ũ, ṽ)T into the point
qt = (û, v̂)T , which lies in the tilted image plane, is described by a projective 2D transformation, i.e., by the
homogeneous matrix H:

qt = H ·q̃c (2.30)

where

H =




h11 h12 h13
h21 h22 h23
h31 h32 h33


 =




q11q33 − q13q31 q21q33 − q23q31 0
q12q33 − q13q32 q22q33 − q23q32 0

q13/d q23/d q33


 (2.31)

2.2 Camera Model and Parameters C-31

Figure 2.17: The tilt of the lens is described by the two parameters Tilt and Rot. Rot describes the orientation of
the tilt axis. Tilt describes the actual tilt of the lens.

projective tilt lens (’area_scan_tilt_*’)

image−side telecentric tilt lens (’area_scan_tilt_image_side_telecentric_*’)

object−side telecentric tilt lens (’area_scan_tilt_object_side_telecentric_*’)

bilateral telecentric tilt lens (’area_scan_tilt_bilateral_telecentric_*’)

Figure 2.18: The ray geometries of the different types of tilt lenses.

with d = ImagePlaneDist and

Q =




q11 q12 q13
q21 q22 q23
q31 q32 q33


 =




(cos ρ)2(1− cos τ) + cos τ cos ρ sin ρ(1− cos τ) sin ρ sin τ
cos ρ sin ρ(1− cos τ) (sin ρ)2(1− cos τ) + cos τ − cos ρ sin τ
− sin ρ sin τ cos ρ sin τ cos τ




with Rot = ρ and Tilt = τ .

For image-side telecentric tilt lenses and bilateral telecentric tilt lenses, the projection onto the tilted image
plane is described by a linear 2D transformation, i.e., by a 2× 2 matrix:

B
as

ic
s

C-32 Basics

H =

(
h11 h12
h21 h22

)
=

1

q11q22 − q12q21

(
q22 −q12
−q21 q11

)
(2.32)

where Q is defined as above for projective lenses.

2.2.2.5 Transformation into Pixel Coordinates

Finally, the point q̃c = (ũ, ṽ)T (or qt if a tilt lens is present) is transformed from the image plane coordinate
system into the image coordinate system (the pixel coordinate system):

qi =

(
r

c

)
=




v̂
Sy

+ Cy

û
Sx

+ Cx


 (2.33)

Here, Sx and Sy are scaling factors. For pinhole cameras, they represent the horizontal and vertical distance of
the sensors elements on the CCD chip of the camera. For cameras with telecentric lenses, they represent the size
of a pixel in world coordinates (not taking into account the lens distortions). The point (Cx, Cy)T is the principal
point of the image. For pinhole cameras, this is the perpendicular projection of the optical center onto the image
plane, i.e., the point in the image from which a ray through the optical center is perpendicular to the image plane.
It also defines the center of the radial distortions. For telecentric cameras, no optical center exists. Therefore, the
principal point is solely defined by the radial distortions.

The parameters f,Magnification, κ,K1,K2,K3, P1, P2, τ, ρ, Sx, Sy, Cx, Cy are called the internal camera pa-
rameters because they determine the projection from 3D to 2D performed by the camera. Note that in addition,
the CameraType, the ImageWidth, the ImageHeight and, only for object-side telecentric tilt lenses, the Image-
PlaneDist must be given. Depending on the camera type, lens type, and lens distortion model, only a subset of
the parameters is actually used, as the following list shows:

’area_scan_division’
[’area_scan_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_polynomial’
[’area_scan_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_tilt_division’
[’area_scan_tilt_division’, Focus, Kappa, ImagePlaneDist, Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_polynomial’
[’area_scan_tilt_polynomial’, Focus, K1, K2, K3, P1, P2, ImagePlaneDist, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

’area_scan_tilt_image_side_telecentric_division’
[’area_scan_tilt_image_side_telecentric_division’, Focus, Kappa, Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_image_side_telecentric_polynomial’
[’area_scan_tilt_image_side_telecentric_polynomial’, Focus, K1, K2, K3, P1, P2, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

’area_scan_telecentric_division’
[’area_scan_telecentric_division’, Magnification, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_telecentric_polynomial’
[’area_scan_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_bilateral_telecentric_division’
[’area_scan_tilt_bilateral_telecentric_division’, Magnification, Kappa, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

2.2 Camera Model and Parameters C-33

’area_scan_tilt_bilateral_telecentric_polynomial’
[’area_scan_tilt_bilateral_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Tilt, Rot, Sx, Sy, Cx,
Cy, ImageWidth, ImageHeight]

’area_scan_tilt_object_side_telecentric_division’
[’area_scan_tilt_object_side_telecentric_division’, Magnification, Kappa, ImagePlaneDist, Tilt, Rot, Sx, Sy,
Cx, Cy, ImageWidth, ImageHeight]

’area_scan_tilt_object_side_telecentric_polynomial’
[’area_scan_tilt_object_side_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, ImagePlaneDist,
Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_hypercentric_division’
[’area_scan_hypercentric_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_hypercentric_polynomial’
[’area_scan_hypercentric_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’line_scan_division’
[’line_scan_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy, Vz]

’line_scan_polynomial’
[’line_scan_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy, Vz]

’line_scan_telecentric_division’
[’line_scan_telecentric_division’, Magnification, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy,
Vz]

’line_scan_telecentric_polynomial’
[’line_scan_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight, Vx, Vy, Vz]

To create camera parameter tuples, you can use the different procedures available in HALCON. There is a proce-
dure available for each camera type, e.g., gen_cam_par_area_scan_division.

We can see that camera calibration is the process of determining the internal camera parameter and the external
camera parameters (tx, ty, tz, α, β, γ).

2.2.3 Tilt Lenses and the Scheimpflug Principle

In a normal setup, the image plane is orthogonal to the optical axis of the lens (see figure 2.19). In case of strong
magnification, that leads to the sometimes undesired effect, that objects that are viewed from an angle are partly
out of focus, because of the limited depth of field (see figure 2.20).

L

F

I

d

L

I

F d

S

Figure 2.19: The Scheimpflug principle: Left: Without tilt lens the focus plane F is parallel to the image plane I.
Therefore, the object is only partly in focus if it exceeds the depth of field d. Right: When using a tilt
lens, the focus plane, the image plane, and the lens plane L are intersecting in the Scheimpflug line
S. Using this principle, a planar object can be completely in focus even if it is viewed from an angle.

B
as

ic
s

C-34 Basics

Figure 2.20: Image of a caliper taken from an angle in two different setups: Left: Without tilt lens, parts of the object
are out of focus. Right: With tilt lens, the whole object is in focus.

To avoid this situation the lens or the image plane may be tilted to meet the Scheimpflug condition: The image
plane, the lens plane, and the focus plane intersect in a single line, the Scheimpflug line. As a consequence, it is
now possible to take images of objects that are completely in focus, even if they are not parallel to the camera.

The use of tilt lenses is especially useful if the depth-of-field is small, e.g., due to a small field of view, a large
magnification, or a low f-number. In these cases, it might be necessary to use a tilt lens to adjust the focus plane to
better fit the observed scene.

This is typically the case in one of the following conditions:

Physical Obstacles If the space directly above the object is blocked by obstacles, e.g., some machine parts above
the conveyor belt, the camera has to be mounted in a way that the objects can only be seen from an angle.
Tilt lenses can be used to align the focus plane with the object plane.

Stereo Vision In most stereo setups, the used cameras observe the scene at different angles. That means, when
using normal lenses, their focal planes are also not parallel, i.e., each camera covers a different volume that
is in focus. With smaller depth-of-field or larger angle between the cameras, the volume that is in focus for
all cameras gets smaller, what might lead to serious problems for the reconstruction. Tilt lenses can be used
to align the focus planes of the different cameras (see section 5.1.3).

Sheet of Light In a sheet-of-light setup, a laser line is projected onto the scene, while a camera is observing the
line’s reflection of the object. To get the most accurate results, it is desirable, that the focus plane of the
camera is aligned with the sheet of light emitted by the laser. This is not always possible with normal lenses
(see section 6.2).

Note that, if no tilt lens is available, in some applications it may be sufficient to increase the depth of field by
using a higher f-number, i.e., a smaller aperture. Of course that implies that either the exposure times have to be
increased (which may lead to a longer overall cycle time) or a stronger illumination has to be used.

2.2.4 Hypercentric Lenses

Hypercentric lenses allow to image the top and the sides of an object simultaneously with a single view.

Like conventional perspective lenses, hypercentric lenses perform a perspective projection of the world coordinates
into the image. In contrast to conventional perspective lenses, however, the optical center (more precisely, the
center of the entrance pupil) of hypercentric lenses lies outside in front of the lens (figure 2.21). Furthermore,

2.2 Camera Model and Parameters C-35

objects to be inspected are placed between the optical center and the lens. As a consequence, objects that are
closer to the camera appear smaller in the image.

Because of these properties, hypercentric lenses can be used, e.g., for inspection tasks where otherwise multi-
ple images would have to be acquired and stitched together. An example is shown in figure 2.22, where the
surface of a vial must be inspected. Using a hypercentric lens allows a 360 degree inspection with a single cam-
era image. See the HDevelop example program %HALCONEXAMPLES%\hdevelop\Calibration\Multi-View\

calibrate_cameras_hypercentric.hdev for more details.

As for conventional perspective lenses, the origin of the camera coordinate system of hypercentric lenses lies in the
optical center of the lens. Note that because the z-axis of the camera coordinate system points in viewing direction,
3D object points have a negative z coordinate in the camera coordinate system.

Camera

Lens

Object

Optical center (center of entrance pupil)
y

z

x

Camera coordinate system

Figure 2.21: The vial is placed between the entrance pupil and the front of the lens. Note that the z coordinates of
object points are negative in the camera coordinate system.

Figure 2.22: (left) Side view of the vial that should be inspected, using a regular lense. (middle) Top view using a
hypercentric lense. (right) Unrolled surface of the label, after camera calibration and mapping.

2.2.5 Line Scan Cameras

A line scan camera has only a one-dimensional line of sensor elements, i.e., to acquire an image, the camera must
move relative to the object (see figure 2.23). This means that the camera moves over a fixed object, the object
travels in front of a fixed camera, or camera and object are both moving.

The relative motion between the camera and the object is modeled in HALCON as part of the internal camera
parameters. In HALCON, the following assumptions for this motion are made:

1. the camera moves — relative to the object — with constant velocity along a straight line

2. the orientation of the camera is constant with respect to the object

3. the motion is equal for all images

B
as

ic
s

C-36 Basics

Motion vector




Vx

Vy

Vz




CCD sensor line

Optical center

Figure 2.23: Principle of line scan image acquisition.

The motion is described by the motion vector V = (Vx, Vy, Vz)
T , which must be given in [meters/scanline] in the

camera coordinate system. The motion vector describes the motion of the camera, i.e., it assumes a fixed object.
In fact, this is equivalent to the assumption of a fixed camera with the object traveling along −V .

HALCON supports a pinhole camera model as well as a telecentric camera model for line scan cameras.

The camera coordinate system of pinhole line scan cameras is defined as follows (see figure 2.24): The origin of
the coordinate system is the center of projection. The z-axis is identical to the optical axis and it is directed so
that the visible points have positive z coordinates. The y-axis is perpendicular to the sensor line and to the z-axis.
It is directed so that the motion vector has a positive y-component, i.e., if a fixed object is assumed, the y-axis
points in the direction in which the camera is moving. The x-axis is perpendicular to the y- and z-axis, so that the
x-, y-, and z-axis form a right-handed coordinate system. For telecentric line scan cameras, the conventions are
identical except for the origin of the coordinate system: it is given by the center of distortion for telecentric line
scan cameras.

Similarly to area scan cameras, the projection of a point given in world coordinates into the image is modeled in
two steps: First, the point is transformed into the camera coordinate system. Then, it is projected into the image.

As the camera moves over the object during the image acquisition, also the camera coordinate system moves
relative to the object, i.e., each image line has been imaged from a different position. This means that there would
be an individual pose for each image line. To make things easier, in HALCON all transformations from world
coordinates into camera coordinates and vice versa are based on the pose of the first image line only. The motion
V is taken into account during the projection of the point pc into the image.

The transformation from the WCS to the CCS of the first image line is a rigid transformation, which can be
expressed by a pose or, equivalently, by the homogeneous transformation matrix cHw . Therefore, the camera
coordinates pc = (xc ,yc , zc)T of point P can be calculated from its world coordinates pw = (xw ,yw , zw)T

simply by
pc = cHw ·pw (2.34)

The six parameters of this transformation (the three translations tx, ty , and tz and the three rotations α, β, and γ)
are called the external camera parameters because they determine the position of the camera with respect to the
world. In HALCON, they are stored as a pose, i.e., together with a code that describes the order of translation and
rotations.

For pinhole line scan cameras, the projection of the point pc that is given in the camera coordinate system of the
first image line into a (sub-)pixel [r,c] in the image is defined as follows:

2.2 Camera Model and Parameters C-37

f

optical center
Camera with

P ′

P

zw

xw

yw

Virtual image plane

Image plane coordinate system (u, v)

Camera coordinate system (xc, yc, zc)

Sensor line coordinate system (rs, cs)

World coordinate system (xw, yw, zw)

yc

zc

xc

rs

cs

u

v

Cy

Sx




−Vx

−Vy

−Vz




Sy
Cx

Figure 2.24: Coordinate systems in regard to a line scan camera.

Assuming

pc =




x
y
z


 ,

the following set of equations must be solved for λ, ũ, and t:

λ · u(ũ, pv) = x− t · Vx
λ · v(ũ, pv) = y − t · Vy

λ · f = z − t · Vz
where pv = −Sy · Cy and u(ũ, ṽ) and v(ũ, ṽ) are given by equation 2.27 on page 28 for the division model and
equation 2.29 on page 29 for the polynomial model.

For telecentric line scan cameras, the projection of the point pc into a (sub-)pixel [r,c] in the image is achieved by
solving the following set of equations for ũ and t:

u(ũ, pv)/m = x− t · Vx
v(ũ, pv)/m = y − t · Vy

where m denotes the magnification of the lens and pv , u(ũ, ṽ), and v(ũ, ṽ) are defined as above. Note that neither
z nor Vz influence the projection for telecentric cameras.

The above formulas already include the compensation for radial distortions.

Finally, the point is transformed into the image coordinate system, i.e., the pixel coordinate system:

c =
ũ

Sx
+ Cx

B
as

ic
s

C-38 Basics

r = t

Sx and Sy are scaling factors. Sx represents the distance of the sensor elements on the CCD line, Sy is the extent
of the sensor elements in y-direction. The point (Cx, Cy)T is the principal point. Note that in contrast to area scan
images, (Cx, Cy)T does not define the position of the principal point in image coordinates. It rather describes the
relative position of the principal point with respect to the sensor line.

The parameters f,m, κ,K1,K2,K3, P1, P2, Sx, Sy, Cx, Cy, Vx, Vy, Vz are called the internal camera parameters
because they determine the projection from 3D to 2D performed by the camera.

As for area scan cameras, the calibration of a line scan camera is the process of determining the internal camera
parameters and the external camera parameters tx, ty, tz, α, β, γ of the first image line.

2.3 3D Object Models

A 3D object model is a data structure that describes 3D objects. 3D object models can be obtained by several means
and they may contain different types of data. Additionally, the different operations that use 3D object models have
different requirements concerning the model’s content. Thus, not every operation can be applied to every 3D object
model. To provide you with the basic knowledge needed to work with 3D object models, the following sections
show

• how to obtain 3D object models (section 2.3.1),

• which information typically is stored in 3D object models (section 2.3.2 on page 40),

• how to modify 3D object models (section 2.3.3 on page 43),

• how to access specific features of 3D object models (section 2.3.4 on page 49),

• how to register 3D object models, i.e., how to match different models of the same object or of overlapping
object parts (section 2.3.5 on page 50), and

• how to visualize 3D object models (section 2.3.6 on page 56).

2.3.1 Obtaining 3D Object Models

The following sections give an impression on the various ways that can be used to obtain a 3D object model.
Generally, 3D object models can be

• created from scratch by explicitly setting the coordinates of points lying on the object’s surface or by explic-
itly setting the parameters of a simple 3D shape (see section 2.3.1.1),

• obtained from Computer Aided Design (CAD) data (see section 2.3.1.2), or

• derived by one of the available 3D reconstruction approaches (see section 2.3.1.3 on page 40).

2.3.1.1 Creating 3D Object Models from Scratch

3D object models can be created from scratch either by using given points that approximate the surfaces of the
objects or by using the parameters of simple 3D shapes like boxes, spheres, cylinders, or planes, which are called
“3D primitives”. In particular, the following operators are available to create a 3D object model from scratch:

• gen_empty_object_model_3d creates an empty 3D object model that can be filled with content, e.g., with
the operator set_object_model_3d_attrib or set_object_model_3d_attrib_mod as is described in
section 2.3.3.2 on page 44,

• gen_object_model_3d_from_points creates a 3D object model consisting of points,

• gen_box_object_model_3d creates a box-shaped 3D primitive,

2.3 3D Object Models C-39

• gen_sphere_object_model_3d or gen_sphere_object_model_3d_center creates a sphere-shaped
3D primitive,

• gen_cylinder_object_model_3d creates a cylinder-shaped 3D primitive, and

• gen_plane_object_model_3d creates a plane-shaped 3D primitive.

For example, in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-

Model\Creation\set_object_model_3d_attrib.hdev an empty 3D object model is cre-
ated with gen_empty_object_model_3d and filled with the point coordinates of a cube using
set_object_model_3d_attrib_mod (see also section 2.3.3.2 on page 44). The resulting 3D object model,
which is a simple point set, is shown in figure 2.25 on the left side.

Figure 2.25: 3D object models created from scratch: (left) 3D object model defined by point coordinates, (right) 3D
primitives defined by shape parameters.

gen_empty_object_model_3d (ObjectModel3D)

PointCoordX := [0.5, 0, 1, 1, 0, 0, 1, 1, 0] - 0.5

PointCoordY := [0, 1, 1, 1, 1, 0, 0, 0, 0] - 0.5

PointCoordZ := [0.5, 0, 0, 1, 1, 0, 0, 1, 1] - 0.5

set_object_model_3d_attrib_mod (ObjectModel3D, ['point_coord_x', \

'point_coord_y', 'point_coord_z'], [], \

[PointCoordX,PointCoordY,PointCoordZ])

In contrast, the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Creation\

gen_primitives_object_model_3d.hdev creates different 3D primitives by specifying their parameters. The
resulting 3D object models are displayed in figure 2.25 on the right side.

gen_plane_object_model_3d ([0, 0, 0, 0, 0, 0, 0], [], [], \

ObjectModel3DPlane1)

gen_sphere_object_model_3d ([0, 0, 3, 0, 0, 0, 0], 0.5, \

ObjectModel3DSphere1)

gen_sphere_object_model_3d_center (-1, 0, 1, 1, ObjectModel3DSphere2)

gen_cylinder_object_model_3d ([1, -1, 2, 0, 0, 60, 0], 0.5, -1, 1, \

ObjectModel3DCylinder)

gen_box_object_model_3d ([-1, 2, 1, 0, 0, 90, 0], 1, 2, 1, ObjectModel3DBox)

2.3.1.2 Obtaining 3D Object Models from Computer Aided Design (CAD) Data

If a 3D model of an object is already available as a Computer Aided Design (CAD) model, e.g., as a DXF or
PLY file, the model simply can be read as 3D object model with the operator read_object_model_3d as is
shown, e.g., in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Features\

smallest_bounding_box_object_model_3d.hdev (see figure 2.26). Please refer to the description of the
operator read_object_model_3d in the Reference Manual for the complete list of supported file formats and
their descriptions.

B
as

ic
s

C-40 Basics

read_object_model_3d ('pipe_joint', 'm', [], [], ObjectModel3D, Status)

Figure 2.26: 3D object model obtained from a CAD model that is available as a PLY file.

2.3.1.3 Deriving 3D Object Models by 3D Reconstruction

All (calibrated) 3D reconstruction approaches are suitable to explicitly or implicitly derive a 3D object model. For
example, with multi-view stereo you can explicitly obtain a 3D object model, whereas with a common 3D sensor
X, Y, and Z images and with depth from focus depth images are obtained.

X, Y, and Z images implicitly contain the information needed for a 3D object model. Thus, you can de-
rive a 3D object model from X, Y, and Z images using the operator xyz_to_object_model_3d, as is
shown, e.g., in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Features\

select_object_model_3d.hdev (see figure 2.27).

ImagePath := 'time_of_flight/'
read_image (Image, ImagePath + 'engine_cover_xyz_01')
scale_image (Image, Image, .001, .0)

zoom_image_factor (Image, Image, 2, 2, 'constant')
decompose3 (Image, X, Y, Z)

xyz_to_object_model_3d (X, Y, Z, ObjectModel3DID)

If only a (calibrated) depth image, i.e., a “Z image” is available, you can create artificial X and Y images as follows:
The X and Y images must have the same size as the Z image. The X image is created by assigning the column
numbers of the Z image to each row of the X image and the Y image is created by assigning the row numbers of
the Z image to each column of the Y image as is illustrated in a simple (pixel-precise) version in figure 2.28. The
thus created X, Y, and Z images can then be transformed again into a 3D object model. Note that the X and Y
images generated in this way usually still need to be multiplied by a suitable factor reflecting the distance between
adjacent points in the X and Y directions, respectively, given in units of the Z values.

Figure 2.29 on page 42 guides you through the different ways how to derive a 3D object model that can be used,
e.g., for a following 3D position recognition approach.

2.3.2 Content of 3D Object Models

The following sections give an impression on

• what kind of information generally may be stored in 3D object models (see section 2.3.2.1) and

• how to query the information contained in a specific 3D object model (see section 2.3.2.2 on page 43).

2.3 3D Object Models C-41

Figure 2.27: 3D object model obtained from X,Y, and Z images.

0

1

2

3

0 0 0

1 1 1

2 2 2

3 3 3

X image Y image

0

1

2

3

4

4

4

4

0

0

0

0

1

1

1

1

2 3

2

2

2

3

3

3

Figure 2.28: Partial content of (pixel-precise) X and Y images created to complete a Z image to an X, Y, and Z
image.

2.3.2.1 Kind of Information Contained in 3D Object Models

Because 3D object models can be obtained by several means, the information that is contained in 3D object models
differs from model to model. For example, if a 3D object model is created explicitly from given points using the
operator gen_object_model_3d_from_points, the basic information in this model is a set of point coordinates.
In contrast, a model that is created explicitly by the parameters of a 3D primitive contains no points but the
parameters of the corresponding simple 3D shape.

Generally, the content of a specific 3D object model depends on the specific process that was used to create or
derive it. For example, if a 3D object model is derived from a (calibrated) 3D reconstruction method like stereo
vision, sheet of light, or depth from focus, it contains points. If within such a 3D object model a 3D primitives
fitting is applied, the model of the resulting 3D primitive contains points as well as the primitive’s parameters.
That is, the 3D object model of such a 3D primitive contains more information than that of a 3D primitive that was
created explicitly by its parameters.

A 3D object model that is obtained from X, Y, and Z images typically contains the coordinates of the 3D points
and the corresponding 2D mapping, i.e., a mapping of the 3D points to 2D image coordinates, whereas a 3D object
model that is obtained by multi-view stereo can contain a lot of further information. For example, the surface may
be approximated by triangles or polygons. A triangulation can be applied also explicitly to a 3D object model that
contains points using the operator triangulate_object_model_3d. Additional operations to modify 3D object
models are introduced in section 2.3.3 on page 43.

The following lists the different kind of data that may be contained in a 3D object model:

• Points: Coordinates of the 3D points

B
as

ic
s

C-42 Basics

Multi−View StereoBinocular StereoSheet of Light

Z Image

3D Sensor

X, Y, Z Image

DFF

3D Object Model
with the Primitive’s
Parameters

or gen_plane_object_model_3d
gen_cylinder_object_model_3d,
gen_sphere_object_model_3d_center,
gen_sphere_object_model_3d,
gen_box_object_model_3d,

Shape−Based
3D Matching

Surface−Based
3D Matching

3D Object Model
(3D Points and
Point Normals)

3D Object Model
(3D Points and
Meshing) Fitting

3D Primitives

xyz_to_object_model_3d

Disparity Image

3D Object Model (Extended Information)3D Object Model (3D Points and 2D Mapping)

X and Y Images
Add Artificial

3D Object Model (3D Points)

disparity_image_to_xyz

3D
 P

os
iti

on
 R

ec
og

ni
tio

n
3D

 R
ec

on
st

ru
ct

io
n

3D Object Model
(the Primitive’s
Parameters)

fr
om

 S
cr

at
ch

3D Pose

M
od

ifi
ca

tio
ns

, e
.g

.,
by

 tr
ia

ng
ul

at
e_

ob
je

ct
_m

od
el

_3
d

C
re

at
io

n
of

 3
D

 O
bj

ec
t M

od
el

s

gen_object_model_3d_from_points

gen_empty_object_model_3d and
set_object_model_3d_attrib_mod

or

prepare_object_model_3dread_object_model_3d

Figure 2.29: Overview on the 3D object model.

If contained in the 3D object model, further parameters can be:

– Triangles: Indices of the 3D points that represent triangles

– Lines: Indices of the 3D points that represent polylines

– Faces: Indices of the 3D points that represent faces

– Normals: Normal vectors

– xyz Mapping: Mapping of a 3D point to image coordinates

• Primitive
If contained in the 3D object model, further parameters are:

– Primitive Type: Type of the primitive (plane, sphere, box, cylinder)

– Primitive Pose: Pose that describes the position and orientation of the primitive

2.3 3D Object Models C-43

– Primitive Rms: Accuracy of the primitive parameters (only available if they were determined by fitting
the primitive into a point cloud)

Note that a 3D object model may contain at most one primitive.

• Extended Attributes

– Attribute Names: Names of extended attributes defined for the 3D object model

– Attribute Types: Types of extended attributes defined for the 3D object model

• Additional Attributes

– Shape Based Data: Flag that indicates if the 3D object model has been prepared for shape-based 3D
matching

– Distance Computation: Flag that indicates if the 3D object model has been prepared for distance com-
putation

The content is represented in form of attributes and can be accessed with the operator
get_object_model_3d_params. For the complete list and a detailed description of the available attributes, see
the reference manual entry of get_object_model_3d_params.

2.3.2.2 Querying Information from Specific 3D Object Models

Because many approaches exist to obtain and modify a 3D object model, also many different combinations of
information can be contained in the models. To query the actual content of a specific 3D object model you can
apply the operator get_object_model_3d_params. With this operator, you can query if a specific information,
a so-called ’attribute’, is contained in the model. For example, you can query if the 3D object model contains
primitive data, points, point normals, triangles, faces, or a 2D mapping. If an attribute is contained in the model,
you can query its explicit values with the same operator.

Note that here only the most common attributes were listed. The complete list of attributes that may be contained
in a 3D object model and their descriptions are provided with the operator get_object_model_3d_params in the
Reference Manual.

Another possibility to check the actual content of a 3D object model is given with a special inspection window
in HDevelop. Here, the parametric properties of the 3D object model that are listed in the previous section are
displayed as described in the HDevelop User’s Guide, section 6.22.8 on page 175.

2.3.3 Modifying 3D Object Models

The following sections show how to modify 3D object models by

• preparing them for a following 3D pose recognition (see section 2.3.3.1),

• adding attributes to their content (see section 2.3.3.2),

• reducing their content to selected attributes (see section 2.3.3.3 on page 46),

• changing their contained point sets, e.g., by a reduction of the number of points or by a selection of points
with specific characteristics (see section 2.3.3.4 on page 46),

• transforming them (see section 2.3.3.5 on page 48), or

• combining several 3D object models to a single 3D object model (see section 2.3.3.6 on page 49).

B
as

ic
s

C-44 Basics

2.3.3.1 Preparing 3D Object Models for a Following 3D Pose Recognition

Some 3D position recognition approaches need 3D object models as input. Especially the shape-based 3D match-
ing (see section 4.2 on page 95) and the segmentation that is applied in the context of a 3D primitives fitting (see
section 4.5 on page 111) need specific information that may be contained only implicitly in the 3D object model.
To prepare a 3D object model for one of these 3D position recognition approaches, i.e., to enable a faster internal
access to this information, you can use the operator prepare_object_model_3d. There, for the shape-based 3D
matching the parameter Purpose must be set to ’shape_based_matching_3d’, whereas for the 3D segmen-
tation it must be set to ’segmentation’. Note that for a surface-based 3D matching (see section 4.3 on page
104) such a preparation is not needed for the actual matching, but may also be required if a visualization with
the operator project_object_model_3d using one of the generic parameters ’hidden_surface_removal’ or
’min_face_angle’ is applied. Then, similar to the shape-based 3D matching the parameter Purpose of pre-
pare_object_model_3d must be set to ’shape_based_matching_3d’.

2.3.3.2 Adding Attributes to 3D Object Models

Sometimes, specific attributes are needed, e.g., for a following operation, that are not contained explicitly but only
implicitly in a 3D object model. Then, different operators are available that can be used to make the implicit
information explicit or to manually add or modify specific attributes, e.g.,

• set_object_model_3d_attrib and set_object_model_3d_attrib_mod can be used to manually add
attributes to a 3D object model or to modify the already contained attributes. The main difference be-
tween both operators is that set_object_model_3d_attrib returns a new 3D object model, whereas
set_object_model_3d_attrib_mod changes the input 3D object model. Besides standard attributes that
can be obtained during the creation or modification of a 3D object model and that are expected by various
operators, so-called “extended” attributes can be set, i.e., new types of attributes can be defined by the user
and attached to a model. These attributes must be indicated in the parameter Name by a preceding “&”.

• surface_normals_object_model_3d can be used to add the normals attribute to 3D object models.

• triangulate_object_model_3d can be used to add the triangles attribute to a 3D object model that con-
sists of points and their normals. In particular, the returned 3D object model contains a mesh of triangles
that either fits perfectly to the set of points contained in the 3D object model (“greedy” algorithm) or that
approximates the set of points (“implicit” algorithm).

• fit_primitives_object_model_3d can be used to obtain the attributes that are related to 3D primitives.
In particular, it can be used to add the parameters of a 3D primitive that fits best into the set of points given
in the original 3D object model. Note that such a 3D primitives fitting is often preceded by a segmentation
of the 3D object model into different 3D object models having similar characteristics as is described in
section 4.5 on page 111.

How to add attributes using set_object_model_3d_attrib or set_object_model_3d_attrib_mod is
shown, e.g., in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Creation\

set_object_model_3d_attrib.hdev. There, the coordinates of the corner points of a cube were added to an
empty 3D object model (see figure 2.30, left) as was already introduced in section 2.3.1.1 on page 38. Additionally,
the attribute for triangles and the corresponding triangle information (see figure 2.30, right) is added.

2.3 3D Object Models C-45

T1 := [0, 8, 5]

T2 := [0, 7, 8]

T3 := [0, 6, 7]

T4 := [0, 5, 6]

T5 := [5, 6, 2]

T6 := [5, 2, 1]

T7 := [6, 7, 3]

T8 := [6, 3, 2]

T9 := [7, 3, 4]

T10 := [7, 4, 8]

T11 := [8, 4, 1]

T12 := [8, 1, 5]

T13 := [2, 3, 4]

T14 := [2, 4, 1]

set_object_model_3d_attrib (ObjectModel3D, 'triangles', [], [T1,T2,T3,T4,T5, \

T6,T7,T8,T9,T10,T11,T12,T13,T14], \

ObjectModel3D2)

Note that one of the sides of the cube contains an additional point that is needed to demonstrate how to modify
a point coordinate with the operator set_object_model_3d_attrib_mod in a following step (see figure 2.31).
Thus, this side of the cube is not represented by two but by four triangles.

PointCoordY[0, 3, 6, 7] := [-1, 0.3, -.8, -.3]

set_object_model_3d_attrib_mod (ObjectModel3D2, 'point_coord_y', [], \

PointCoordY)

Figure 2.30: 3D object model of a cube: (left) model with point coordinates and (right) with triangles added.

Figure 2.31: 3D object model after modifying a point coordinate.

B
as

ic
s

C-46 Basics

2.3.3.3 Removing Attributes from 3D Object Models

To reduce the amount of data stored in a 3D object model, selected attributes of a 3D object model can be removed
from the model if they are not needed anymore. In particular, the operator copy_object_model_3d can be used
to copy a 3D object model such that only selected attributes are copied to the new 3D object model. For exam-
ple, in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Segmentation\

segment_object_model_3d.hdev a simultaneous segmentation and 3D primitives fitting has been applied to a
3D object model that was obtained from X, Y, and Z images. To save memory, information like the point coordi-
nates and the 2D mapping, which were obtained automatically during the creation of the 3D object model from the
X, Y, and Z images, are removed from the model by copying only the data related to the obtained 3D primitives.

segment_object_model_3d (ObjectModel3DID, [ParSegmentation,ParFitting], \

[ValSegmentation,ValFitting], ObjectModel3DOutID)

for Index := 0 to |ObjectModel3DOutID| - 1 by 1

copy_object_model_3d (ObjectModel3DOutID[Index], 'primitives_all', \

CopiedObjectModel3DID)

endfor

2.3.3.4 Modifying the Point Sets of 3D Object Models

Various operators are provided that enable the modification of the 3D object model’s point set or the segmentation
of a 3D object model into different parts. For example,

• set_object_model_3d_attrib_mod can be used to directly modify point coordinates as was shown al-
ready in section 2.3.3.2 on page 44.

• select_points_object_model_3d applies thresholds to selected attributes to reduce the set of points to
those points that lie within the specified attribute value ranges.

• reduce_object_model_3d_by_view can be used to reduce the point set to a set of points lying within a
specified 2D region that is defined for a specified 2D projection of the 3D object model.

• sample_object_model_3d can be used to achieve 3D object models with a uniform point density with a
specified distance between the points. This is suitable to generally reduce the point density, e.g., to enable a
faster following operation like a triangulation, or if the 3D object model contains parts for which the point
density is higher than for other parts of the object. The latter case may result, e.g., from a multi-view stereo
reconstruction (see section 5.4 on page 139) or from the registration and fusion of multiple 3D object models
(see section 2.3.5 on page 50). Note that, depending on the specified distance between the points, the point
density of the resulting 3D object model may even be higher than that of the original one.

• simplify_object_model_3d can be used to reduce the number of points of triangulated 3D object models,
especially for smooth parts of the 3D object model, i.e., for parts where a high point density is often not
necessary. This may be used, for example, to speed up subsequent operator calls by using the resulting 3D
object model with reduced complexity. Typically, the point density of the simplified 3D object model is
nonuniform. The point density is higher for parts where more points are required to represent the object’s
geometry and it is lower for smoother parts. This is in contrast to the results of sample_object_model_3d,
where a uniform point density is achieved.

• smooth_object_model_3d smoothens the surface of the 3D object model. Typically, it is used to prepare
a 3D object model for a surface triangulation or to smooth noisy point data within a 3D object model.

• segment_object_model_3d segments a 3D object model into parts with similar characteristics, e.g., the
same orientation of the normals or a similar curvature. Such a segmentation can be applied, e.g., in the
context of a 3D primitives fitting (see section 4.5 on page 111).

• connection_object_model_3d segments a 3D object model into parts that consist of connected compo-
nents. Whether two components are considered as being connected depends on user-specified criteria, in
particular attributes or distance functions and their corresponding threshold values.

2.3 3D Object Models C-47

For example, in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\

Features\select_object_model_3d.hdev select_points_object_model_3d is used to select points of
a 3D object model using a threshold on the z coordinates. Thus the individual parts of the engine cover shown in
figure 2.32 on the left side are separated from their background as is shown in figure 2.32 on the right side.

select_points_object_model_3d (ObjectModel3DID, 'point_coord_z', MinValue, \

MaxValue, ObjectModel3DIDReduced)

After excluding the background from the model, the remaining parts are further segmented into connected parts
with connection_object_model_3d as is shown in figure 2.33.

connection_object_model_3d (ObjectModel3DIDReduced, 'distance_3d', 0.010, \

ObjectModel3DIDConnections)

Figure 2.32: 3D object model (left) in its initial state and (right) after removing points of the background using a
threshold.

Figure 2.33: 3D object model after the segmentation into its connected components.

Another way to effectively reduce your 3D object model point set for further processing steps is the usage of the
2D mapping of the point data. By calling object_model_3d_to_xyz with ’cartesian_faces’ set for Type, a 3D
object model (which needs to contain polygon or triangle faces) is transformed into the three images X, Y, and Z.

Thereby, the three images solely contain information about those parts of the model, that can be observed
by a camera with specified pose and parameters, while hidden parts are omitted (see figure 2.34). With
xyz_to_object_model_3d you can then perform the reverse transformation and obtain the reduced 3D object
model.

B
as

ic
s

C-48 Basics

Figure 2.34: 3D object model (left) in its initial state and as viewed from the specified camera pose (center). The
model is reduced to the parts visible to the camera, using a 2D mapping. The resulting object model
(green) and the initial model (gray) are visualized together for comparison (right).

* Transform the 3D model to XYZ images, reducing the data

* according to the chosen camera parameters and pose.

object_model_3d_to_xyz (X, Y, Z, ObjectModel3D, 'cartesian_faces', \

CameraParam, Pose)

* Transform the XYZ images to a 3D object model.

xyz_to_object_model_3d (X, Y, Z, IntermediateObjectModel3D)

In the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Segmentation\

reduce_object_model_3d_to_visible_parts.hdev the reduction of an 3D object model using a 2D mapping
is shown step by step.

Not just for the reduction of model data, but also for tasks like surface comparison, 2D mappings can be very
useful, as by handling 2D images instead of 3D point clouds, significant speed-up can be achieved. After lo-
cating a 3D object model in the observed scene with any alignment method, potential deviations between model
and scene can be detected by comparing their respective 2D mappings. Therefore, use sub_image on the Z

images of scene and model, which results in an image, where higher pixel values represent higher deviation be-
tween scene and model. Extract the domain of the defect by applying a suitable threshold. You can call re-
duce_object_model_3d_by_view with CamParam set to ’xyz_mapping’ in order to reduce your point cloud to
the respective view.

In general, the usage of 2D mapping increases speed when handling point clouds. This can for instance be the case
when preparing a 3D object model for surface-based matching, e.g., by removing outliers, smoothing or reducing
its domain. Especially the operators sample_object_model_3d and surface_normals_object_model_3d

benefit, if a 3D object model contains a 2D mapping.

2.3.3.5 Transforming 3D Object Models

3D object models can be spatially transformed by several means. In particular, you can transform 3D object models
by

• a rigid 3D transformation using the operator rigid_trans_object_model_3d,

• an arbitrary affine 3D transformation using the operator affine_trans_object _model_3d, or

• an arbitrary projective 3D transformation using the operator projective_trans_object_model_3d.

Note that the transformed 3D object model contains only data that can be represented by a 3D object model and
that could be transformed. For example, after an affine 3D transformation no 3D primitives will be contained in
the transformed 3D object model. For the transformation of 3D primitives only the rigid transformation is suitable.

2.3 3D Object Models C-49

2.3.3.6 Combining 3D Object Models

To combine several 3D object models to a single 3D object model, you can apply the operator
union_object_model_3d. Note that the resulting model contains only those attributes that are contained in all of
the input 3D object models. Alternatively, you can use fuse_object_model_3d to fuse multiple 3D object models
(that are registered in the same coordinate system) into a surface. See the HDevelop example %HALCONEXAMPLES%\
hdevelop\3D-Object-Model\Transformations\fuse_object_model_3d.hdev to see how to fine-tune the
parameters for this operator.

2.3.4 Extracting Features of 3D Object Models

The following sections show how to

• calculate or access specific features of 3D object models and

• how to select 3D object models by their specific features.

2.3.4.1 Calculating or Accessing Features of 3D Object Models

Several kinds of features are contained explicitly or implicitly in 3D object models. On the one hand, the 3D object
models explicitly contain different attributes as was introduced in section 2.3.2 on page 40. These attributes can
be related to features like point coordinates, normals, triangles, faces, or the parameters of 3D primitives and can
be accessed with the operator get_object_model_3d_params.

On the other hand, the 3D object models contain implicit information about specific geometric features, i.e., the
contained information can be used to explicitly calculate these features using one of the many available operators
that are provided by HALCON:

• area_object_model_3d calculates the area of the surface of the 3D object model,

• distance_object_model_3d calculates the distances of the points in one 3D object model to the points,
triangles, or primitive in another 3D object model,

• max_diameter_object_model_3d calculates the maximum diameter of the 3D object model,

• moments_object_model_3d calculates the mean or the central moment of second order of the 3D object
model,

• smallest_bounding_box_object_model_3d and smallest_sphere_object_model_3d calculate the
smallest bounding box or the smallest sphere surrounding the 3D object model,

• volume_object_model_3d_relative_to_plane calculates the volume of the 3D object model relative
to a plane if triangles or a list of polygons is contained in the 3D object model, and

• intersect_plane_object_model_3d calculates an intersetion between the 3D object model and a plane
and returns the cross section as a set of 3D points that are connected by lines (see, e.g., figure 2.35, which
shows the result of the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\

Transformations\intersect_plane_object_model_3d.hdev).

In the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Features\

select_object_model_3d.hdev the maximum diameters and the volumes for the connected components
of the 3D object model that were introduced in section 2.3.3.4 on page 46 are calculated (see figure 2.36).

volume_object_model_3d_relative_to_plane (ObjectModel3DIDConnections, [0, 0, \

MaxValue,0, 0, 0, 0], 'signed', \

'true', Volume)

max_diameter_object_model_3d (ObjectModel3DIDConnections, Diameter)

B
as

ic
s

C-50 Basics

Figure 2.35: (left) 3D object model of a mug and (right) its intersection with a plane.

Figure 2.36: Features calculated for the connected components of a 3D object model.

2.3.4.2 Selecting 3D Object Models by Their Features

If many 3D object models are available but only those 3D object models are needed that have specific features,
the operator select_object_model_3d can be applied. It selects 3D object models from an array of 3D object
models according to global features like the existence of specific attributes or specific value ranges for features like
the object’s mean diameter or the object’s volume.

For example, in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\

Features\select_object_model_3d.hdev the maximum diameter and the volume of the connected compo-
nents of the 3D object model are used to select only those components that have a certain size. The selected models
are visualized in figure 2.37.

select_object_model_3d (ObjectModel3DTranslated, ['volume', \

'diameter_object'], 'and', [MinVolume,MinDiameter], \

[MaxVolume,MaxDiameter], ObjectModel3DSelected)

2.3.5 Matching of 3D Object Models

HALCON provides functionality for matching 3D object models that represent the same object or overlapping
parts of the same object. This matching is also called “registration” of 3D object models.

The following sections

2.3 3D Object Models C-51

Figure 2.37: Connected components of a 3D object model, selected by their maximum diameter and volume.

• introduce pair-wise and global registration of 3D object models (see section 2.3.5.1) and

• show how registration and further modifications of 3D object models can be used to derive a surface model
for a surface-based 3D matching (see section 2.3.5.2).

2.3.5.1 Registering 3D Object Models

With the operator register_object_model_3d_pair you can apply a matching between two 3D object models
to get the pose that describes the spatial relation between them. This process is also called “pair-wise registration”
of 3D object models. The matching determines an initial pose that is then consecutively refined so that the mutual
difference between the overlapping parts of both 3D object models becomes minimal. The final pose can be used
to transform the first 3D object model into the coordinate system of the second 3D object model. Note that if both
models are already available in the same coordinate system, the initial pose between them is already implicitly
known. Then, the operator can also be applied in a mode that performs no initial matching but only the pose
refinement (Method=’icp’).

With the operator register_object_model_3d_global you can improve the relative positions between many
3D object models, which is also called “global registration” of 3D object models. In particular, if a 3D object
consists of several overlapping 3D object models, the specific overlaps are used to determine an array of homoge-
neous transformation matrices with which the models can be transformed such that the relation between all models
is refined, i.e., a minimal mutual difference between all 3D object models is realized, which leads to a better
representation of the complete object.

For both operators, the result of the registration is typically used to transform the initial 3D object models with the
operator affine_trans_object_model_3d.

2.3.5.2 Example Application: Deriving a Surface Model from a Set of 3D Images

The HDevelop example program %HALCONEXAMPLES%\hdevelop\Applications\Robot-Vision\

reconstruct_3d_object_model_for_matching.hdev shows how registration is used to derive a unique
surface model for a surface-based 3D matching (see section 4.3 on page 104) from a set of views on the same
object that are obtained by a 3D sensor. In particular, for each view on the object a 3D object model and a
corresponding gray value image are available (see figure 2.38).

Step 1: Register 3D object models

With a pair-wise registration, a following global registration, and the corresponding affine transformations, the 3D
object models of the initial views on the object are aligned. In particular, a pair-wise registration is applied for all
3D object models of successive views.

B
as

ic
s

C-52 Basics

Figure 2.38: Some of the images obtained together with the corresponding 3D object models by a 3D sensor.

read_object_model_3d ('universal_joint_part/universal_joint_part_xyz_00.om3', \

'm', [], [], ObjectModel3D, Status)

PreviousOM3 := ObjectModel3D

RegisteredOM3s := ObjectModel3D

for Index := 1 to NumTrainingImages - 1 by 1

read_object_model_3d ('universal_joint_part/universal_joint_part_xyz_' + Index$'02d', \

'm', [], [], ObjectModel3D, Status)

register_object_model_3d_pair (ObjectModel3D, PreviousOM3, 'matching', \

'default_parameters', 'accurate', Pose, \

Score)

pose_to_hom_mat3d (Pose, HomMat3D)

RegisteredOM3s := [RegisteredOM3s,ObjectModel3D]

Offsets := [Offsets,HomMat3D]

PreviousOM3 := ObjectModel3D

endfor

For example, in figure 2.39 the corresponding images for the 3D object models of view 12 and view 13 are shown
and the result of transforming both 3D object models into the same coordinate system is displayed.

Figure 2.39: Pair-wise registration of two 3D object models: (top) images corresponding to the registered 3D object
models, (bottom) visualization of the pair-wise registered and transformed 3D object models.

After all pair-wise registrations have been applied, all 3D object models can be transformed into the coordinate
system of the first model (see figure 2.40, left). The relations between the thus transformed models are then refined
by a global registration and the corresponding affine transformations (see figure 2.40, right).

2.3 3D Object Models C-53

register_object_model_3d_global (RegisteredOM3s, Offsets, 'previous', [], \

'max_num_iterations', 1, HomMat3DRefined, \

Score)

affine_trans_object_model_3d (RegisteredOM3s, HomMat3DRefined, \

GloballyRegisteredOM3s)

Figure 2.40: The 3D object models (left) after the successively applied pair-wise registration and (right) after the
global registration.

Step 2: Extract surface model from the registered 3D object models

The registered 3D object models consist of different structures, in particular of a universal joint, i.e., the actual
object that should be used as surface model, and parts of the background. The extraction of the surface model from
the set of aligned 3D object models is done in several steps. First, the models are combined into a single 3D object
model using union_object_model_3d (see figure 2.41, left). To get an object with a smaller and homogeneous
point density, sample_object_model_3d is applied (see figure 2.41, right).

union_object_model_3d (GloballyRegisteredOM3s, 'points_surface', \

UnionOptimized)

MinNumPoints := 5

SampleDistance := 0.5

sample_object_model_3d (UnionOptimized, 'accurate', SampleDistance, \

'min_num_points', MinNumPoints, SampleExact)

After that, the object is further smoothed and the surface normals are calculated. In this example, the object is
moved temporarily, so that the origin of the coordinate system lies below the object. This way, in combination
with the ’mls_force_inwards’ option of smooth_object_model_3d, the normals of the smoothed object model
will point downwards making the surface-based 3D matching more robust.

get_object_model_3d_params (SampleExact, 'center', Center)

get_object_model_3d_params (SampleExact, 'bounding_box1', BoundingBox)

hom_mat3d_identity (HomMat3DTrans)

hom_mat3d_translate_local (HomMat3DTrans, -Center[0], -Center[1], \

-BoundingBox[2], HomMat3DTranslate)

affine_trans_object_model_3d (SampleExact, HomMat3DTranslate, \

SampleExactTrans)

smooth_object_model_3d (SampleExactTrans, 'mls', 'mls_force_inwards', \

'true', SmoothObject3DTrans)

hom_mat3d_invert (HomMat3DTranslate, HomMat3DInvert)

affine_trans_object_model_3d (SmoothObject3DTrans, HomMat3DInvert, \

SmoothObject3D)

Then, the resulting model is triangulated with triangulate_object_model_3d and the connected components
are determined with connection_object_model_3d (see figure 2.42).

B
as

ic
s

C-54 Basics

Figure 2.41: The 3D object models (left) united into a single 3D object model and (right) subsampled and smoothed.

triangulate_object_model_3d (SmoothObject3D, 'greedy', [], [], Surface3D, \

Information)

connection_object_model_3d (Surface3D, 'mesh', 1, ObjectModel3DConnected)

Figure 2.42: 3D object model (left) after the triangulation and (right) after the segmentation into connected compo-
nents.

To separate the component that should be used as model for the surface-based 3D matching from the background,
select_object_model_3d is applied with common shape features (see figure 2.43).

select_object_model_3d (ObjectModel3DConnected, ['has_triangles', \

'num_triangles'], 'and', [1, 2000], [1, 100000], \

ObjectModel3DSelected)

select_object_model_3d (ObjectModel3DSelected, ['central_moment_2_x', \

'central_moment_2_y'], 'and', [150, 200], [400, \

230], ObjectModel3DCross)

Alternatively, instead of this workflow to obtain a surface, you can try and use fuse_object_model_3d.

Step 3: Use the surface model for a surface-based 3D matching

The obtained 3D object model is now used for a surface-based 3D matching. The matching is demonstrated first on
the data that was used to create the surface model, i.e., on the initial views on the model object that were obtained
by a 3D sensor (see figure 2.44). Then, a matching is applied in multi-view stereo images representing different
views on a set of universal joints (see figure 2.45). For detailed information about surface-based 3D matching and
multi-view stereo reconstruction, please refer to section 4.3 on page 104 and section 5.4 on page 139.

2.3 3D Object Models C-55

Figure 2.43: 3D object model selected to be used as surface model for a surface-based 3D matching.

Figure 2.44: Result of surface-based 3D matching in one of the views of the training data.

Figure 2.45: Result of surface-based 3D matching in a scene obtained from multi-view stereo images.

B
as

ic
s

C-56 Basics

2.3.6 Visualizing 3D Object Models

For the visualization of 3D object models, different operators and procedures are available.

• Visualization of individual 3D object models with disp_object_model_3d.

– Visualization of individual 3D object models without the need to set camera parameters and pose.

– disp_object_model_3d provides an easy to use interface for the visualization of one or a small
number of 3D object models.

• Visualization of multiple 3D object models, a so called ’3D scene’, with display_scene_3d.

– Best choice if multiple 3D object models should be displayed.

– Multiple cameras can be defined to view the 3D scene from different positions.

– Labels can be attached to specific 3D points.

– Smooth display of dynamic scenes since the handle can manage the caching of the objects on the
graphics card.

• Interactive visualization of 3D object models with the procedure visualize_object_model_3d.

– Visualization of 3D object models with the possibility to interactively change their position and orien-
tation.

Note that the visualization of 3D object models requires OpenGL 2.1, GLSL 1.2, and the OpenGL extensions
GL_EXT_framebuffer_object and GL_EXT_framebuffer_blit. If these requirements are not fulfilled, e.g., because
of the use of Windows Remote Desktop or SSH forwarding, a compatibility mode with less requirements but lower
quality is automatically enabled.

2.3.6.1 Visualization of individual 3D object models

To simply display 3D object models within a window on the screen, the operator disp_object_model_3d can
be used. Here, camera parameters and pose can be specified to define the view on the objects. In addition, with
the operator get_disp_object_model_3d_info you can then query specific information for each position in the
displaying window. In particular, for each row and column pair, you can query the index of the 3D object model
that is displayed in this pixel or the depth of the 3D object model in this pixel (measured from the camera to the
projected point).

The HDevelop example program disp_object_model_3d.hdev shows how to use disp_object_model_3d, e.g.,
to display three 3D object models with different colors:

disp_object_model_3d (WindowHandle, ObjectModel3DIDs, CameraParam, ObjPoses, \

'colored', 12)

Note that the simplest way to call disp_object_model_3d just requires the handles of the 3D object model and
the window, in which it should be displayed:

disp_object_model_3d (WindowHandle, ObjectModel3D, [], [], [], [])

In this case, the pose and the camera parameters are determined internally such that the complete object is visible.

If a view like that generated by disp_object_model_3d should not only be displayed but stored in an image, you
can use render_object_model_3d instead.

If the contours of a 3D object model for a specific view on the object are needed, project_object_model_3d
can be used.

2.3 3D Object Models C-57

2.3.6.2 Visualization of multiple 3D object models using handles

Another way of displaying 3D data are the 3D scene operators.

The HDevelop example program display_scene_3d.hdev shows how to create and display a 3D scene.

First a scene is created via create_scene_3d, which enables the visualization of 3D objects.

create_scene_3d (Scene3D)

A scene needs at least one camera. A camera can be added to the scene with the operator add_scene_3d_camera.
Optionally, the pose of the camera can be set.

add_scene_3d_camera (Scene3D, CameraParam, CameraIndex)

set_scene_3d_camera_pose (Scene3D, CameraIndex, [0, 0, -0.4, 0, 0, 0, 0])

Optionally, a light source can be selected for the scene. The light source can be added to the scene with
the operator add_scene_3d_light and its properties, e.g., the RGB color of its diffuse part, can be set with
set_scene_3d_light_param.

add_scene_3d_light (Scene3D, [1.0, 1.0, 1.0], 'point_light', LightIndex)

set_scene_3d_light_param (Scene3D, LightIndex, 'diffuse', [0.8, 0.8, 0.8])

set_scene_3d_light_param (Scene3D, LightIndex, 'ambient', [0.2, 0.2, 0.2])

Now objects can be added to the scene using add_scene_3d_instance. This operator requires a 3D object model
and its pose relative to the coordinate system of the 3D scene. Note that the pose of the 3D scene in the world
coordinate system can be set with set_scene_3d_to_world_pose.

add_scene_3d_instance (Scene3D, ObjectModel3D, Pose1, Instance1Index)

set_scene_3d_instance_param (Scene3D, Instance1Index, 'alpha', 0.7)

add_scene_3d_instance (Scene3D, ObjectModel3D, Pose2, Instance2Index)

set_scene_3d_instance_param (Scene3D, Instance2Index, 'color', '#f28f26')

Optionally, labels can be attached to specific 3D points.

add_scene_3d_label (Scene3D, 'Instance 1', Pose1[0:2], 'bottom_left', \

'point', Instance1LabelID)

add_scene_3d_label (Scene3D, 'Instance 2', Pose2[0:2], 'top', 'point', \

Instance2LabelID)

The 3D objects can then be displayed using the operator display_scene_3d.

display_scene_3d (WindowHandle, Scene3D, CameraIndex)

An image of the scene can also be rendered with render_scene_3d.

render_scene_3d (Image, Scene3D, CameraIndex)

2.3.6.3 Interactive visualization of 3D object models

A convenient way to visualize 3D object models such that the object can be moved and rotated interactively is
provided by the external procedure visualize_object_model_3d.

B
as

ic
s

C-58 Basics

Metric Measurements in a Specified Plane With a Single Camera C-59

Chapter 3

Metric Measurements in a Specified
Plane With a Single Camera

In HALCON it is easy to obtain undistorted measurements in world coordinates from images. In general, this can
only be done if two or more images of the same object are taken at the same time with cameras at different spatial
positions. This is the so-called stereo approach (see chapter 5 on page 117).

In industrial inspection, we often have only one camera available and time constraints do not allow us to use the
expensive process of finding corresponding points in the stereo images (the so-called stereo matching process).

Nevertheless, it is possible to obtain measurements in world coordinates for objects acquired through telecentric
lenses and objects that lie in a known plane, e.g., on an assembly line, for pinhole cameras. Both of these tasks can
be solved by intersecting an optical ray (also called line of sight) with a plane.

With this, it is possible to measure objects that lie in a plane, even when the plane is tilted with respect to the
optical axis. The only prerequisite is that the camera has been calibrated. In HALCON, the calibration process is
very easy as can be seen in the example described in section 3.1, which introduces the operators that are necessary
for the calibration process.

The easiest way to perform the calibration is to use the HALCON standard calibration plates. You just need to take
a few images of a calibration plate (see figure 3.1 for examples), where in one image the calibration plate has been
placed directly on the measurement plane.

Figure 3.1: The HALCON calibration plates.

The sections that follow the example show how to

• calibrate a camera (section 3.2 on page 61),

• transform image into world coordinates (section 3.3 on page 76), and

• rectify images, i.e., remove perspective and/or lens distortions from an image (section 3.4 on page 80).

Finally, we briefly look at the case of inspecting a non-planar object (section 3.5 on page 87).

S
in

gl
e

C
am

er
a

C-60 Metric Measurements in a Specified Plane With a Single Camera

3.1 First Example

The HDevelop example %HALCONEXAMPLES%\solution_guide\3d_vision\

camera_calibration_multi_image.hdev shows how easy it is to calibrate a camera and use the calibration
results to transform measurements into 3D world coordinates.

First, we specify general parameters for the calibration.

create_calib_data ('calibration_object', 1, 1, CalibDataID)

set_calib_data_cam_param (CalibDataID, 0, [], StartCamPar)

set_calib_data_calib_object (CalibDataID, 0, 'calplate_80mm.cpd')

Then, images of the calibration plate are read. With the operator find_calib_object, the calibration plate is
searched, the contours and centers of the marks are extracted, and the pose of the calibration plate is estimated.
The obtained information is stored in the calibration data model.

for I := 1 to NumImages by 1

read_image (Image, ImgPath + 'calib_image_' + I$'02d')
find_calib_object (Image, CalibDataID, 0, 0, I, [], [])

endfor

Now, we perform the actual calibration with the operator calibrate_cameras.

calibrate_cameras (CalibDataID, Errors)

Afterwards, we can access the calibration results, i.e., the internal camera parameters and the pose of the calibration
plate in a reference image.

get_calib_data (CalibDataID, 'camera', 0, 'params', CamParam)

get_calib_data (CalibDataID, 'calib_obj_pose', [0, 1], 'pose', Pose)

This pose is used as the external camera parameters, i.e., the pose of the 3D world coordinate system in camera
coordinates. In the example, the world coordinate system is located on the ruler (see figure 3.2). To compensate
for the thickness of the calibration plate, the pose is moved by the corresponding value.

set_origin_pose (Pose, 0, 0, 0.002, Pose)

Now, we perform the measurement. For that, we have acquired an additional image of the ruler without occlusions
by the calibration plate.

read_image (Image, ImgPath + 'ruler')
gen_measure_rectangle2 (690, 680, rad(-0.25), 480, 8, 1280, 960, 'bilinear', \

MeasureHandle)

measure_pairs (Image, MeasureHandle, 0.5, 5, 'all', 'all', RowEdgeFirst, \

ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, \

ColumnEdgeSecond, AmplitudeSecond, IntraDistance, \

InterDistance)

Row := (RowEdgeFirst + RowEdgeSecond) / 2.0

Col := (ColumnEdgeFirst + ColumnEdgeSecond) / 2.0

With the internal and external camera parameters, the measurement results are transformed into 3D world coordi-
nates with the operator image_points_to_world_plane.

image_points_to_world_plane (CamParam, Pose, Row, Col, 'mm', X1, Y1)

3.1.1 Single Image Calibration

In general, a correct camera calibration needs multiple images as described in the section “How to take a set
of suitable images?” in the chapter reference “Calibration”. If only a single image is used, correct mea-
surements are restricted to the plane of the calibration plate. Measurements outside of the calibration plane,

3.2 3D Camera Calibration C-61

Figure 3.2: After the calibration, marks on the ruler are measured and the results are transformed into 3D world
coordinates with the calibration results.

e.g., when using set_origin_pose like in the example %HALCONEXAMPLES%\solution_guide\3d_vision\

camera_calibration_multi_image.hdev, will be afflicted with a systematic error.

However, if the focal length is roughly known, it can be kept fixed during the calibration process with
set_calib_data.

set_calib_data (CalibHandle, 'camera', 'general', \

'excluded_settings', 'focus')

By doing this, the systematic error can be kept to a minimum if the start value for the focal length is close to the
real focal length.

The HDevelop example %HALCONEXAMPLES%\solution_guide\3d_vision\

camera_calibration_single_image.hdev shows a measurement after a calibration with only a single
image.

3.2 3D Camera Calibration

This section describes the process of 3D camera calibration in detail. Note that you can easily calibrate your
camera with the help of HDevelop’s Calibration Assistant (see the HDevelop User’s Guide, section 7.2 on page
184 for more details).

The calibration process consists of three steps:

• the preparation,

• the calibration, and

• the access to the results.

After accessing the results, you can store them.

Preparations Before Performing the Calibration

All information for the calibration is passed in the so-called calibration data model. In particular, you

• create the model and specify basic information like the number of cameras to calibrate (section 3.2.1),

• specify initial values for the internal camera parameters (section 3.2.2),

S
in

gl
e

C
am

er
a

C-62 Metric Measurements in a Specified Plane With a Single Camera

• describe the calibration object (section 3.2.3 on page 67),

• observe the calibration object in multiple poses (images) and store the extracted information (section 3.2.4
on page 71), and

• optionally restrict the calibration to certain parameters, keeping the others fixed (section 3.2.5 on page 72).

Performing the Actual Calibration

In HALCON, you calibrate single or multiple cameras with the operator calibrate_cameras, which needs the
calibration data model as input (see section 3.2.6 on page 72 for more information).

Accessing the Results of the Calibration

calibrate_cameras again stores its results, in particular the calibrated camera parameters and poses of the
calibration objects, in the calibration data model. You can access them (and all other calibration parameters) with
the operator get_calib_data (see section 3.2.7 on page 72).

3.2.1 Creating the Calibration Data Model

You create a calibration data model with the operator create_calib_data, specifying the number of cameras
and the numbers of calibration objects. When using a single camera, you typically use a single calibration object
as well.

create_calib_data ('calibration_object', 1, 1, CalibDataID)

Then, you proceed to

• specify initial values for the internal camera parameters (section 3.2.2) and

• describe the calibration object (section 3.2.3 on page 67).

3.2.2 Specifying Initial Values for the Internal Camera Parameters

You set internal camera parameters with the operator set_calib_data_cam_param.

gen_cam_par_area_scan_division (0.012, 0, 0.00000375, 0.00000375, 640, 480, \

1280, 960, StartCamPar)

set_calib_data_cam_param (CalibDataID, 0, [], StartCamPar)

Besides the calibration data model, the operator needs the following parameters as input:

• CameraIdx: the index of the camera (0 for a single camera),

• CameraType: the camera type, and

• CameraParam: a tuple with values for the internal camera parameters.

Below, you find

• a list of the supported camera types and their parameters (section 3.2.2.1),

• tips how to choose the suitable distortion model (section 3.2.2.2 on page 64),

• special tips for area scan cameras (section 3.2.2.3 on page 64), and

• special tips for line scan cameras (section 3.2.2.4 on page 65).

3.2 3D Camera Calibration C-63

3.2.2.1 Camera Type and Camera Parameters

The values of CameraParam depend on the used camera, lens type, and the selected model for the lens distortion.
In addition to the internal camera parameters, the CameraType, the ImageWidth, and the ImageHeight must be
given. Please, refer to section 2.2 on page 25 for the description of the underlying camera models and to sec-
tion 3.2.2.2 on page 64 for tips that help you to decide which distortion model to use. The values of CameraParam
are set as follows:

’area_scan_division’
[’area_scan_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_polynomial’
[’area_scan_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_tilt_division’
[’area_scan_tilt_division’, Focus, Kappa, ImagePlaneDist, Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_polynomial’
[’area_scan_tilt_polynomial’, Focus, K1, K2, K3, P1, P2, ImagePlaneDist, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

’area_scan_tilt_image_side_telecentric_division’
[’area_scan_tilt_image_side_telecentric_division’, Focus, Kappa, Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_image_side_telecentric_polynomial’
[’area_scan_tilt_image_side_telecentric_polynomial’, Focus, K1, K2, K3, P1, P2, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

’area_scan_telecentric_division’
[’area_scan_telecentric_division’, Magnification, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_telecentric_polynomial’
[’area_scan_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’area_scan_tilt_bilateral_telecentric_division’
[’area_scan_tilt_bilateral_telecentric_division’, Magnification, Kappa, Tilt, Rot, Sx, Sy, Cx, Cy,
ImageWidth, ImageHeight]

’area_scan_tilt_bilateral_telecentric_polynomial’
[’area_scan_tilt_bilateral_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Tilt, Rot, Sx, Sy, Cx,
Cy, ImageWidth, ImageHeight]

’area_scan_tilt_object_side_telecentric_division’
[’area_scan_tilt_object_side_telecentric_division’, Magnification, Kappa, ImagePlaneDist, Tilt, Rot, Sx, Sy,
Cx, Cy, ImageWidth, ImageHeight]

’area_scan_tilt_object_side_telecentric_polynomial’
[’area_scan_tilt_object_side_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, ImagePlaneDist,
Tilt, Rot, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_hypercentric_division’
[’area_scan_hypercentric_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight]

’area_scan_hypercentric_polynomial’
[’area_scan_hypercentric_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight]

’line_scan_division’
[’line_scan_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy, Vz]

’line_scan_polynomial’
[’line_scan_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy, Vz]

S
in

gl
e

C
am

er
a

C-64 Metric Measurements in a Specified Plane With a Single Camera

’line_scan_telecentric_division’
[’line_scan_telecentric_division’, Magnification, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight, Vx, Vy,
Vz]

’line_scan_telecentric_polynomial’
[’line_scan_telecentric_polynomial’, Magnification, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth,
ImageHeight, Vx, Vy, Vz]

Also note that for all operators that use internal camera parameters as input, the parameter values are checked as to
whether they fulfill certain restrictions. However, these restrictions may differ slightly for some operators. Please
see the chapter “Calibration . Multi-View” for details about the respective restrictions.

For most of the internal camera parameters, initial values can be determined from the specifications of the CCD
sensor and the lens. The following sections contain additional tips on how to find suitable initial values for

• area scan cameras (section 3.2.2.3) and

• line scan cameras (section 3.2.2.4).

3.2.2.2 Which Distortion Model to Use

For area scan cameras, two distortion models can be used: The division model and the polynomial model. The
division model uses one parameter to model the radial distortions while the polynomial model uses five parameters
to model radial and decentering distortions (see section 2.2.2 on page 26).

The advantages of the division model are that the distortions can be applied faster, especially the inverse distortions,
i.e., if world coordinates are projected into the image plane. Furthermore, if only few calibration images are
used or if the field of view is not covered sufficiently, the division model typically yields more stable results
than the polynomial model. The main advantage of the polynomial model is that it can model the distortions
more accurately because it uses higher order terms to model the radial distortions and because it also models the
decentering distortions. Note that the polynomial model cannot be inverted analytically. Therefore, the inverse
distortions must be calculated iteratively, which is slower than the calculation of the inverse distortions with the
(analytically invertible) division model.

Typically, the division model should be used for the calibration. If the accuracy of the calibration is not high
enough, the polynomial model can be used. But note that the calibration sequence used for the polynomial model
must provide a complete coverage of the area in which measurements will later be performed. The distortions may
be modeled inaccurately outside of the area that was covered by the calibration plate. This holds for the image
border as well as for areas inside the field of view that were not covered by the calibration plate.

3.2.2.3 Tips for Area Scan Cameras

If you face problems using a camera model and you suspect that the sensor of your camera may be tilted (e.g.,
due to a defect), we suggest to check if a calibration using a camera model for object-side telecentric tilt lenses
(’area_scan_tilt_object_side_telecentric_division’ or ’area_scan_tilt_object_side_telecentric_polynomial’) leads
to better results.

In the following, some hints for the determination of the initial values for the internal camera parameters of an
area scan camera are given:

3.2 3D Camera Calibration C-65

Focus f: Focal length of the lens (only for lenses that perform a perspective projection on the object
side of the lens). The initial value is the nominal focal length of the used lens, e.g., 0.008m.

Magnification
m:

Magnification of the lens (only for lenses that perform a telecentric projection on the object
side of the lens). The initial value is the nominal magnification of the used telecentric lens
(the image size divided by the object size), e.g., 0.2.

Kappa (κ): Use 0.0 as initial value (only for the division model).
Or:

K1, K2, K3,
P1, P2:

Use the initial value 0.0 for each of the five coefficients (only for the polynomial model).

ImagePlaneDist: Distance of the tilted image plane from the perspective projection center (only tilt lenses that
perform a perspective projection on the image side of the lens), e.g., 0.02m. The initial value
is the distance of the exit pupil of the lens to the image plane. The exit pupil is the (virtual)
image of the aperture stop (typically the diaphragm), as viewed from the image side of the
lens. Typical values are in the order of a few centimeters to very large values if the lens is
close to being image-side telecentric.

Tilt and Rot: The tilt angle τ (0◦ ≤ τ ≤ 90◦) describes the angle by which the optical axis is tilted with
respect to the normal of the sensor plane. The rotation angle ρ (0◦ ≤ ρ < 360◦) describes the
direction in which the optical axis is tilted. These parameters are only used if a tilt lens is part
of the camera setup. These angles are typically roughly known based on the considerations
that led to the use of the tilt lens or can be read off from the mechanism by which the lens is
tilted.

Sx and Sy: Scale factors. This corresponds to the horizontal and vertical distance between two neighbor-
ing cells on the sensor. Since in most cases the image signal is sampled line-synchronously,
Sy is determined by the dimension of the sensor and does not need to be estimated by the
calibration process.
The initial values depend on the dimensions of the used chip of the camera. See the technical
specification of your camera for the actual values. Attention: These values increase if the
image is subsampled!

Cx and Cy: Initial values for the coordinates of the principal point are the coordinates of the image center,
i.e., half the image width and half the image height. Notice: The values of Cx and Cy decrease
if the image is subsampled! Appropriate initial values are, for example:

Full image (640*480) Subsampling (320*240)
Cx 320.0 160.0
Cy 240.0 120.0

ImageWidth
and
ImageHeight:

These two parameters are set by the used frame grabber and therefore are not calibrated.
Appropriate initial values are, for example:

Full image (640*480) Subsampling (320*240)
ImageWidth 640 320
ImageHeight 480 240

3.2.2.4 Tips for Line Scan Cameras

In the following, some hints for the determination of the initial values for the internal camera parameters of a line
scan camera are given:

Focus f: The initial value for the focal length (only for pinhole lenses) is the nominal focal length of
the used lens, e.g., 0.035 m.

Magnification m: The initial value for the magnification (only for telecentric lenses) is the nominal magnifica-
tion of the used lens, e.g., 0.2.

Kappa (κ): Use 0.0 as initial value (only for the division model).
Or:

S
in

gl
e

C
am

er
a

C-66 Metric Measurements in a Specified Plane With a Single Camera

K1, K2, K3, P1,
P2:

Use the initial value 0.0 for each of the five coefficients (only for the polynomial model).
Note that the parameters P1 and P2 are highly correlated with other parameters in the camera
model. Therefore, they typically cannot be determined reliably and should be excluded from
the calibration by calling

set_calib_data (CalibDataID, 'camera', 'general', \

'excluded_settings', 'poly_tan_2')

Sx: The horizontal distance between two neighboring sensor elements can be taken from the
technical specifications of the camera. Typical initial values are 7·10−6 m, 10·10−6 m, and
14·10−6 m. Notice: The value of Sx increases if the image is subsampled. Note also that Sx
will not be calibrated for line scan cameras because Sx and Focus (for pinhole lenses) and Sx
and Magnification (for telecentric lenses) cannot be determined simultaneously for line scan
cameras.

Sy: The size of a cell in the direction perpendicular to the sensor line can also be taken from the
technical specifications of the camera. Typical initial values are 7·10−6 m, 10·10−6 m, and
14·10−6 m. Notice: The value of Sy increases if the image is subsampled. Note also that Sy
will not be calibrated for line scan cameras because it cannot be determined separately from
the parameter Cy.

Cx: The initial value for the x-coordinate of the principal point is half the image width. Notice:
The values of Cx decreases if the image is subsampled! Appropriate initial values are:

Image width: 1024 2048 4096 8192

Cx: 512 1024 2048 4096

Cy: Normally, the initial value for the y-coordinate of the principal point can be set to 0.

ImageWidth
and
ImageHeight:

These two parameters are determined by the used frame grabber and therefore are not cali-
brated.

3.2 3D Camera Calibration C-67

Vx, Vy, Vz: The initial values for the x-, y-, and z-component of the motion vector depend on the image
acquisition setup. Assuming a fixed camera that looks perpendicularly onto a conveyor belt,
such that the y-axis of the camera coordinate system is anti-parallel to the moving direction
of the conveyor belt (see figure 3.3 on page 68), the initial values are Vx = Vz = 0. The initial
value for Vy can then be determined, e.g., from a line scan image of an object with known
size (e.g., calibration plate or ruler):

Vy = L[m]/L[row]

with:
L[m] = Length of the object in object coordinates [meter]

L[row] = Length of the object in image coordinates [rows]

If, compared to the above setup, the camera is rotated 30 degrees around its optical axis,
i.e., around the z-axis of the camera coordinate system (figure 3.4 on page 68), the above
determined initial values must be changed as follows:

Vzx = sin(30◦) · Vy
Vzy = cos(30◦) · Vy
Vzz = Vz = 0

If, compared to the first setup, the camera is rotated -20 degrees around the x-axis of the
camera coordinate system (figure 3.5 on page 69), the following initial values result:

Vxx = Vx = 0

Vxy = cos(−20◦) · Vy
Vxz = sin(−20◦) · Vy

The quality of the initial values for Vx, Vy, and Vz are crucial for the success of the whole
calibration. If they are not accurate enough, the calibration may fail. Section 3.2.10.1 on
page 76 provides you with tips what to do in this case.
Note that for telecentric line scan cameras, the value of Vz has no influence on the image
position of 3D points and therefore cannot be determined. Consequently, Vz is not optimized
and left at its initial value for telecentric line scan cameras. Therefore, the initial value of Vz
should be set to 0.

3.2.3 Describing the Calibration Object

With the operator set_calib_data_calib_object you specify the needed information about the calibration
object.

If you are using a HALCON calibration plate, the name of the corresponding description file is sufficient.

set_calib_data_calib_object (CalibDataID, 0, 'calplate_80mm.cpd')

How to obtain a HALCON calibration plate is explained in section 3.2.3.1.

However, you can also use your own calibration object. Then, you pass the coordinates of the markers instead of
the file name to the operator (see section 3.2.3.2 on page 70 for more information).

3.2.3.1 How to Obtain a Suitable Calibration Plate

The simplest method to determine the camera parameters of a CCD camera is to use a HALCON calibration
plate (see figure 3.6 on page 69 for examples). In this case, the whole process of finding the calibration plate,
extracting the calibration marks, and determining the correspondences between the extracted calibration marks and
the respective 3D world coordinates can be carried out automatically. Even more important, these calibration plates
are highly accurate, down to 1 µm or below, which is a prerequisite for high accuracy applications. Therefore, we
recommend to obtain such a calibration plate from the local distributor from which you purchased HALCON.

S
in

gl
e

C
am

er
a

C-68 Metric Measurements in a Specified Plane With a Single Camera

f

optical center
Camera with

P ′

P

zw

xw

yw

Virtual image plane

Image plane coordinate system (u, v)

Camera coordinate system (xc, yc, zc)

Sensor line coordinate system (rs, cs)

World coordinate system (xw, yw, zw)

yc

zc

xc

rs

cs

u

v

Cy

Sx




−Vx

−Vy

−Vz




Sy
Cx

Figure 3.3: Line scan camera looking perpendicularly onto a conveyor belt.

f

optical center
Camera with

P ′

zw

xw

yw

Image plane coordinate system (u, v)

Camera coordinate system (xc, yc, zc)

Sensor line coordinate system (rs, cs)

World coordinate system (xw, yw, zw)

yc

zc

xc




−Vx

−Vy

−Vz




Cx

P

u
v

rs

Sx

Sy

Virtual image plane
Cy cs

Figure 3.4: Line scan camera rotated around the optical axis.

Two types of HALCON calibration plates are supported. In particular, calibration plates with hexagonally ar-
ranged marks and calibration marks with rectangularly arranged marks are available. The calibration plates with
hexagonally arranged marks are introduced with HALCON 12 and are recommended for most applications, as they
provide the following advantages compared to the calibration plates with rectangularly arranged marks:

• The calibration plates with rectangularly arranged marks must be completely visible in the images whereas
plates with hexagonally arranged marks may protrude beyond the rim of the image. Thus, with the latter

3.2 3D Camera Calibration C-69




−Vx

−Vy

−Vz




optical center

f

Virtual image plane

P

Camera with

Camera coordinate system (xc, yc, zc)

Sensor line coordinate system (rs, cs)

Image plane coordinate system (u, v)

World coordinate system (xw, yw, zw)

xc

yw
zw

xw

cs

P ′Cy

Sx

yc

v
u

Sy

rs

zc

Cx

Figure 3.5: Line scan camera rotated around the x-axis.

Figure 3.6: HALCON calibration plates of different materials and sizes: (a) with hexagonally arranged marks and
(b) with rectangularly arranged marks.

less care must be taken when placing the calibration plate in the images. The acquisition of the calibration
images becomes faster and more convenient without a loss of robustness.

• As calibration plates with hexagonally arranged marks contain a significantly larger number of calibration
marks and can protrude beyond the rim of the image, less images are needed to get a comparable calibration
result.

The calibration plates are available in different materials (ceramics for front light, glass for back light applications,
aluminum for very large calibration plates) and sizes. Thus, you can choose the one that is optimal for your
application. Detailed information about the available materials, sizes, and the accuracy can be obtained from your
distributor.

The main differences between the calibration plates with hexagonally arranged marks and the calibration plates
with rectangularly arranged marks are:

• Different arrangement of the marks: For calibration plates with hexagonally arranged marks the marks are

S
in

gl
e

C
am

er
a

C-70 Metric Measurements in a Specified Plane With a Single Camera

arranged in a hexagonal lattice such that each mark has six equidistant neighbors whereas calibration plates
with rectangularly arranged marks are arranged in a rectangular grid with equidistant rows and columns.

• Different number of contained marks: Calibration plates with hexagonally arranged marks have a signifi-
cantly larger number of marks than calibration plates with rectangularly arranged marks.

• Different special patterns: The calibration plates with hexagonally arranged marks contain one to five unique
finder patterns, i.e., special mark hexagons (each consisting of a mark and its six neighbors) where either
four or six marks contain a hole. To find the calibration plate in the image and estimate the pose of it relative
to the observing camera using find_calib_object, at least one finder pattern must be completely visible
in the image. The calibration plates with rectangularly arranged marks contain a triangular orientation mark
and a surrounding frame. Here, the complete calibration plate must be visible to find the plate and estimate
its pose.

• Different origin: The coordinate system of the calibration plate with hexagonally arranged marks is located
at the center of the central mark of the first finder pattern whereas the coordinate system of the calibration
plate with rectangularly arranged marks is located in the barycenter of all marks.

• Slightly different handling: Due to the differences described above, the rules for the acquisition of calibra-
tion images differ in some points. First of all, for calibration plates with hexagonally arranged marks less
calibration images are needed and the calibration plates do not have to be completely visible in the image.
Please refer to the section “How to take a set of suitable images?” in the chapter reference “Calibration” for
further details.

Each calibration plate comes with a description file. Place this file in the subdirectory calib of the directory
where you installed HALCON. Then, you can use its file name directly in the operator caltab_points (see sec-
tion 3.2.4). Note that the description files for calibration plates with hexagonally arranged marks have the file
extension ’.cpd’ and those of the calibration plates with rectangularly arranged marks have the file extension ’.de-
scr’. Calibration plates with rectangularly arranged marks always have dark marks on a light background, whereas
calibration plates with hexagonally arranged marks usually have light marks on a dark background. Nevertheless,
also calibration plates with dark hexagonally arranged marks on a light background are available, e.g., for back
light applications. The corresponding description files are indicated by the suffix ’dark_on_light’.

For test purposes, you can create a calibration plate yourself with the operator create_caltab for calibration
plates with hexagonally arranged marks and with the operator gen_caltab for calibration plates with rectan-
gularly arranged marks. Print the resulting PostScript file and mount it on a planar and rigid surface, e.g., an
aluminum plate or a solid cardboard. If you do not mount the printout on a planar and rigid surface, you will
not get meaningful results by HALCON’s camera calibration as the operators create_caltab and gen_caltab

assume that the calibration marks lie within a plane. Such self-made calibration plates should only be used for
test purposes as you will not achieve the high accuracy that can be obtained with an original HALCON calibration
plate. Note that the printing process is typically not accurate enough to create calibration plates smaller than 16 cm
for calibration plates with hexagonally arranged marks and 3 cm for calibration plates with rectangularly arranged
marks.

3.2.3.2 Using Your Own Calibration Object

With HALCON, you are not restricted to using a planar calibration object like the HALCON calibration plate. You
can use a 3D calibration object or even arbitrary characteristic points (natural landmarks). The only requirement is
that the 3D world position of the model points is known with high accuracy.

Then, you simply pass the 3D coordinates of all points (markers) of the calibration object as a tuple in the parameter
CalibObjDescr of set_calib_data_calib_object. All x, y, and z coordinates of all points must be packed
sequentially in the tuple in the form [X, Y, Z].

Note however, that if you use your own calibration object, you cannot use the operator find_calib_object
anymore. Instead, you must determine the 2D locations of the model points and the correspondence to the 3D
points by yourself.

3.2 3D Camera Calibration C-71

3.2.4 Observing the Calibration Object in Multiple Poses (Images)

The main input data for the calibration are the so-called observations. For this, the calibration object is placed in
different poses. For each pose, the camera acquires an image. In this image, the markers of the calibration object
are extracted, and their (pixel) coordinates, together with the indices of camera, calibration object, and calibration
object pose and with a tuple containing the indices of the corresponding markers, are stored in the calibration data
model.

If you are using a standard HALCON calibration plate, you can apply the extraction of the coordinates with the
operator find_calib_object, which automatically stores the obtained information, including the coordinates of
the markers and the list of marker correspondences, in the calibration data model.

for I := 1 to NumImages by 1

read_image (Image, ImgPath + 'calib_image_' + I$'02d')
find_calib_object (Image, CalibDataID, 0, 0, I, [], [])

endfor

If you are using your own calibration object, you must extract its markers and determine the correspondences by
yourself and then store the information into the calibration data model with set_calib_data_observ_points.

The following sections contain

• recommendations for acquiring suitable calibration images (section 3.2.4.1) and

• additional information about the extraction of the calibration marks of a standard HALCON calibration plate
(section 3.2.4.2).

3.2.4.1 Acquiring Calibration Images

If you want to achieve accurate results, please follow the recommendations given in the section “How to take a
set of suitable images?” in the chapter reference “Calibration”. It gives guidance regarding the placement of the
calibration plates, the camera setup and the image properties.

Note that a good calibration result can be obtained only for a distribution of the calibration marks within the full
field of view of the camera. You can imagine the part of the 3D space that corresponds to the field of view as
a calibration volume like shown in figure 3.7. There, two poses of calibration plates and the positions of their
calibration marks, when seen from different views, are illustrated. You can see, e.g., in the view from side 1, that
large parts are not covered by marks. To get a full distribution of the marks and thus enable a good calibration
result, you have to place the calibration plates in your other images so that the empty parts of the calibration volume
are minimized for all views. Be aware that when having very small calibration plates (compared to the field of
view), this means that it may be necessary to use significantly more than the recommended number of calibration
images.

If only one image is used for the calibration process or if the orientations of the calibration plate do not vary over
the different calibration images, it is not possible to determine both the focal length and the pose of the camera
correctly; only the ratio between the focal length and the distance between calibration plate and camera can be
determined in this case. Nevertheless, it is possible to measure world coordinates in the plane of the calibration
plate. When measuring outside the plane onto which the calibration plate was placed, you will get systematic
errors (see section 3.1.1 on page 60).

The accuracy of the resulting world coordinates depends — apart from the measurement accuracy in the image —
very much on the number of images used for the calibration process. The more images (with significantly different
calibration plate poses) are used, the more accurate results will be achieved.

3.2.4.2 Extracting the Marks from a HALCON Calibration Plate

The operator find_calib_object searches for the calibration plate, determines the image coordinates of the
calibration marks with high precision, and stores the results in a calibration data model. The calibration mark
contours, can be accessed with the operator get_calib_data_observ_contours.

If the calibration object is no standard HALCON calibration plate set_calib_data_observ_points needs to
be used (see section 3.2.3.2 on page 70).

S
in

gl
e

C
am

er
a

C-72 Metric Measurements in a Specified Plane With a Single Camera

Side 2 Top

Side 1

Side 2

Top

Side 1

Figure 3.7: Investigation of the calibration volume: (left) calibration volume with two calibration plate poses and
(right) the corresponding distribution of calibration marks when seen from different views. For a good
calibration result, the areas without calibration marks (which are especially large in the view from side
1) have to be minimized by a cautious selection of the further calibration plate poses.

3.2.5 Restricting the Calibration to Specific Parameters

If certain camera parameters are already known, you can exclude them from the calibration with the operator
set_calib_data. Analogously, you can restrict the calibration to certain parameters.

Please refer to the Reference Manual for more information and a short example.

3.2.6 Performing the Calibration

After preparing the calibration data model as described in the previous sections, you perform the calibration by
calling the operator calibrate_cameras, using the calibration data model as input.

calibrate_cameras (CalibDataID, Errors)

As a direct result, only the calibration error is returned. It corresponds to the average distance (in pixels) between
the backprojected calibration points and their extracted image coordinates. An error of up to 0.1 pixels indicates
that the calibration was successful. You can further analyze the quality of the calibration results with the operator
get_calib_data (see the Reference Manual for details).

The main results of the calibration, e.g., the internal camera parameters, are stored in the calibration data model.
How to access them is described in the following section.

If the calibration fails, please refer to section 3.2.10 on page 76 for additional information.

3.2.7 Accessing the Results of the Calibration

The main results of the operator calibrate_cameras comprise the internal camera parameters and the pose of
the calibration plate in each of the images from which the corresponding points were determined. The operator
stores them in the calibration data model. You can access them with the operator get_calib_data.

The example program %HALCONEXAMPLES%\solution_guide\3d_vision\

camera_calibration_internal.hdev shows how to access the internal camera parameters and write
them into a file.

3.2 3D Camera Calibration C-73

get_calib_data (CalibDataID, 'camera', 0, 'params', CamParam)

write_cam_par (CamParam, 'camera_parameters.dat')

The external camera parameters cannot be queried directly, because the needed information about the world coor-
dinate system is not stored in the calibration data model. However, if the calibration plate was placed directly on
the measurement plane, its pose can be used to easily derive the external camera parameters, which are the pose of
the measurement plane. This is described in the following section.

3.2.7.1 Determining the External Camera Parameters

The external camera parameters describe the relation between the measurement plane and the camera, i.e., only
if the external parameters are known it is possible to transform coordinates from the camera coordinate system
(CCS) into the coordinate system of the measurement plane and vice versa. In HALCON, the measurement plane
is defined as the plane z = 0 of the world coordinate system (WCS).

The external camera parameters can be determined in different ways:

1. Use the pose obtained from one of the calibration images in which the calibration plate is placed directly on
the measurement plane. In this case, you just need to access this pose with the operator get_calib_data.

2. Separate the determination of the internal camera parameters from the determination of the external camera
parameters by using an additional image in which the calibration plate is placed directly on the measurement
plane. Apply find_calib_object to extract the calibration marks and the pose.

3. Determine the correspondences between 3D world points and their projections in the image by yourself and
then call vector_to_pose.

If you only need to accurately measure the dimensions of an object, regardless of the absolute position of the object
in a given coordinate system, one of the first two cases can be used.

The latter two cases have the advantage that the external camera parameters can be determined independently from
the internal camera parameters. This is more flexible and might be useful if the measurements should be done in
several planes from a single camera or if it is not possible to calibrate the camera in situ.

In the following, the different cases are described in more detail.

Placing the Calibration Plate on the Measurement Plane in One of the Calibration Images

The first case is the easiest way of determining the external parameters. The calibration plate must be placed
directly on the measurement plane, e.g., the assembly line, in one of the (many) images used for the determination
of the internal parameters.

Since the pose of the calibration plate is determined by the operator calibrate_cameras, you can simply access
its pose with the operator get_calib_data. This way, internal and external parameters are determined in one
single calibration step as is shown in the HDevelop example program %HALCONEXAMPLES%\solution_guide\

3d_vision\camera_calibration_multi_image.hdev. Here, the pose of the calibration plate (calibration
object index 0) in the first calibration image is determined. Please note that each pose consists of seven values.

get_calib_data (CalibDataID, 'calib_obj_pose', [0, 1], 'pose', Pose)

The resulting pose would be the true pose of the measurement plane if the calibration plate were infinitely thin.
Because real calibration plates have a thickness d > 0, the pose of the calibration plate is shifted by an amount
−d perpendicular to the measurement plane, i.e., along the z axis of the WCS. To correct this, we need to shift the
pose by d along the z axis of the WCS. To perform this shift, the operator set_origin_pose can be used.

set_origin_pose (Pose, 0, 0, 0.002, Pose)

In general, the calibration plate can be oriented arbitrarily within the WCS as long as the spatial relation between
the calibration plate and the measurement plane is known (see figure 3.8). Then, to derive the pose of the measure-
ment plane from the pose of the calibration plate, a rigid transformation is necessary. In the following example, the
pose of the calibration plate is adapted by a translation along the y axis followed by a rotation around the x axis.

S
in

gl
e

C
am

er
a

C-74 Metric Measurements in a Specified Plane With a Single Camera

pose_to_hom_mat3d (FinalPose, HomMat3D)

hom_mat3d_translate_local (HomMat3D, 0, 3.2, 0, HomMat3DTranslate)

hom_mat3d_rotate_local (HomMat3DTranslate, rad(-14), 'x', HomMat3DAdapted)

hom_mat3d_to_pose (HomMat3DAdapted, PoseAdapted)

Sx

Sy

y cp

z cp
xcp

y c

z c

xc
xc y c z c), ,(Camera coordinate system

Hw

cp

cpH
c

xcp y cp z cp), ,(Calibration plate coordinate system

u v(,)Image plane coordinate system
r c(),Image coordinate system

Measurement plane (z = 0)w

xw yw z wWorld coordinate system), ,(

Hw

c

yw

xw

z w

f

c

r

v

u

optical center
Camera with

Virtual image plane

Calibration plate

x

y

C

C

Figure 3.8: Relation between calibration plate and measurement plane.

Placing the Calibration Plate on the Measurement Plane in a Separate Image

If the advantages of using the HALCON calibration plate should be combined with the flexibility given by the
separation of the internal and external camera parameters the second method for the determination of the external
camera parameters can be used.

First, the camera is calibrated as described in the previous sections. This can be done, e.g., prior to the mounting
of the camera at its final usage site.

Then, after setting up the camera at its final usage site, the external parameters can be determined. The only
thing to be done is to take an additional image in which the calibration plate is placed directly on the measure-
ment plane. From this image the external parameters can be determined as is shown in the HDevelop example
program %HALCONEXAMPLES%\solution_guide\3d_vision\camera_calibration_external.hdev. There,
the internal camera parameters, the image in which the calibration plate was placed directly on the measurement
plane, and the world coordinates of the calibration marks are read from file.

3.2 3D Camera Calibration C-75

read_cam_par ('camera_parameters.dat', CamParam)

read_image (Image, ImgPath + 'calib_11')

Then, the calibration marks and the pose of the calibration plate are extracted.

find_calib_object (Image, CalibDataID, 0, 0, 1, [], [])

Finally, to take the thickness of the calibration plate into account, the z value of the origin given by the camera
pose is translated by the thickness of the calibration plate.

set_origin_pose (PoseForCalibrationPlate, 0, 0, 0.00075, \

PoseForCalibrationPlate)

Note that it is very important to fix the focus of your camera if you want to separate the calibration process into
two steps as described in this section, because changing the focus is equivalent to changing the focal length, which
is part of the internal parameters.

Using Known 3D Points and Their Corresponding Image Points

If it is necessary to perform the measurements within a given world coordinate system, the third case for the
determination of the external camera parameters can be used. Here, you need to know the 3D world coordinates of
at least three points that do not lie on a straight line. Then, you must determine the corresponding image coordinates
of the projections of these points. Now, the operator vector_to_pose can be used for the determination of the
external camera parameters.

An example for this possibility of determining the external parameters is given in the following program. First, the
world coordinates of three points are set.

X := [0, 50, 100, 80]

Y := [5, 0, 5, 0]

Z := [0, 0, 0, 0]

Then, the image coordinates of the projections of these points in the image are determined. In this example, they
are simply set to some approximate values. In reality, they should be determined with subpixel accuracy since they
define the external camera parameters.

RCoord := [414, 227, 85, 128]

CCoord := [119, 318, 550, 448]

Finally, the operator vector_to_pose is called with the correspondences and the internal camera parameters.

vector_to_pose (X, Y, Z, RCoord, CCoord, CamParam, 'iterative', 'error', \

FinalPose, Errors)

Again, it is very important to fix the focus of your camera because changing the focus is equivalent to changing
the focal length, which is part of the internal parameters.

3.2.8 Deleting Observations from the Calibration Data Model

To determine the effect of an observation on the calibration or to remove observations of bad quality from the
calibration data model, an observation can be deleted using the operator remove_calib_data_observ. For
acquiring calibration images of suitable quality please refer to the recommendations listed in the section “How to
take a set of suitable images?” in the chapter reference “Calibration”.

RemoveObservationIdx := 3

remove_calib_data_observ (CalibDataID, 0, 0, RemoveObservationIdx)

When performing the camera calibration again as described in section 3.2.6 on page 72, it can be noted that the
calibration error changes.

S
in

gl
e

C
am

er
a

C-76 Metric Measurements in a Specified Plane With a Single Camera

3.2.9 Saving the Results

After accessing the results you can store them with write_cam_par and write_pose).

3.2.10 Troubleshooting

Below, you find information for the case that the calibration of a line scan camera fails.

3.2.10.1 Problems With Calibrating Line Scan Cameras

In general, the procedure for the calibration of line scan cameras is identical to the one for the calibration of area
scan cameras.

However, line scan imaging suffers from a high degree of parameter correlation. For example, for pinhole line
scan cameras, any small rotation of the linear array around the x-axis of the camera coordinate system can be
compensated by changing the y-component of the translation vector of the respective pose. Even the focal length
is correlated with the z-component of the translation vector of the pose, i.e., with the distance of the object from
the camera.

The consequences of these correlations for the calibration of line scan cameras are that some parameters cannot
be determined with high absolute accuracy. Nevertheless, the set of parameters is determined consistently, what
means that the world coordinates can be measured with high accuracy.

Another consequence of the parameter correlations is that the calibration may fail in some cases where the start
values for the internal camera parameters are not accurate enough. If this happens, try the following approach
for pinhole line scan cameras: In many cases, the start values for the motion vector are the most difficult to
set. To achieve better start values for the parameters V x, V y, and V z, reduce the number of parameters to be
estimated such that the camera calibration succeeds. Try first to estimate the parameters V x, V y, V z, α, β, γ,
tx, ty, and tz by calling set_calib_data with ItemType = ’camera’, ItemIdx = ’general’, DataName =
’calib_settings’, and DataValue = [’vx’, ’vy’, ’vz’, ’alpha’, ’beta’, ’gamma’, ’transx’, ’transy’, ’transz’] and
if this does not work, try DataValue = [’vx’, ’vy’, ’vz’, ’transx’, ’transy’, ’transz’]. Then, determine the whole set
of parameters using the above determined values for V x, V y, and V z as start values. A similar approach may be
used for telecentric line scan cameras. Of course, since tz and V z have no effect for telecentric line scan cameras,
these parameters do not need to be excluded explicitly.

If none of the above proposed tips works, try to determine better start values directly from the camera setup. If
possible, change the setup such that it is easier to determine appropriate start values, e.g., mount the camera such
that it looks approximately perpendicularly onto the conveyor belt (see figure 3.3 on page 68).

If the calibration plates lie in a plane, you may get the error 8440 (“Camera calibration did not

converge”), because in this case the parameters are even more correlated. A possible solution may be to ex-
clude the rotation around the x axis, i.e., ’alpha’ from the calibration with the operator set_calib_data.

3.3 Transforming Image into World Coordinates and Vice Versa

In this section, you learn how to obtain world coordinates from images based on the calibration data. On the
one hand, it is possible to process the images as usual and then to transform the extraction results into the world
coordinate system. In many cases, this will be the most efficient way of obtaining world coordinates. On the other
hand, some applications may require that the segmentation itself must be carried out in images that are already
transformed into the world coordinate system (see section 3.4 on page 80).

In general, the segmentation process reduces the amount of data that needs to be processed. Therefore, rectifying
the segmentation results is faster than rectifying the underlying image. What is more, it is often better to perform
the segmentation process directly on the original images because smoothing or aliasing effects may occur in the
rectified image, which could disturb the segmentation and may lead to inaccurate results. These arguments suggest
to rectify the segmentation results instead of the images.

In the following, first some general remarks on the underlying principle of the transformation of image coordinates
into world coordinates are given. Then, it is described how to transform points, contours, and regions into the world
coordinate system. Finally, we show that it is possible to transform world coordinates into image coordinates as
well, e.g., in order to visualize information given in the world coordinate system.

3.3 Transforming Image into World Coordinates and Vice Versa C-77

3.3.1 The Main Principle

Given the image coordinates of one point, the goal is to determine the world coordinates of the corresponding
point in the measurement plane. For this, the line of sight, i.e., a straight line from the optical center of the camera
through the given point in the image plane, must be intersected with the measurement plane (see figure 3.9).

Sx

Sy

y c

z c

xc
xc y c z c), ,(Camera coordinate system

u v(,)Image plane coordinate system
r c(),Image coordinate system

xw yw z wWorld coordinate system), ,(

Hw

c

z w
Measurement plane (= 0)

yw

xw

z w

f

c

r

v

u

P’

optical center
Camera with

Virtual image plane

P

L
ine of sight

y

C

C

x

Figure 3.9: Intersecting the line of sight with the measurement plane.

The calibration data is necessary to transform the image coordinates into camera coordinates and finally into world
coordinates.

All these calculations are performed by the operators of the family ..._to_world_plane.

Again, please remember that in HALCON the measurement plane is defined as the plane z = 0 with respect to the
world coordinate system. This means that all points returned by the operators of the family ..._to_world_plane
have a z-coordinated equal to zero, i.e., they lie in the plane z = 0 of the world coordinate system.

S
in

gl
e

C
am

er
a

C-78 Metric Measurements in a Specified Plane With a Single Camera

3.3.2 World Coordinates for Points

The world coordinates of an image point (r, c) can be determined using the operator
image_points_to_world_plane. In the following code example, the row and column coordinates of
pitch lines are transformed into world coordinates.

image_points_to_world_plane (CamParam, FinalPose, RowPitchLine, \

ColPitchLine, 1, X1, Y1)

As input, the operator requires the internal and external camera parameters as well as the row and column coordi-
nates of the point(s) to be transformed.

Additionally, the unit in which the resulting world coordinates are to be given is specified by the parameter Scale
(see also the description of the operator image_to_world_plane in section 3.4.1 on page 80). This parameter is
the ratio between the unit in which the resulting world coordinates are to be given and the unit in which the world
coordinates of the calibration target are given (equation 3.1).

Scale =
unit of resulting world coordinates

unit of world coordinates of calibration target
(3.1)

In many cases the coordinates of the calibration target are given in meters. In this case, it is possible to set the unit
of the resulting coordinates directly by setting the parameter Scale to ’m’ (corresponding to the value 1.0, which
could be set alternatively for the parameter Scale), ’cm’ (0.01), ’mm’ (0.001), ’microns’ (1e-6), or ’µm’ (again,
1e-6). Then, if the parameter Scale is set to, e.g., ’m’, the resulting coordinates are given in meters. If, e.g., the
coordinates of the calibration target are given in µm and the resulting coordinates have to be given in millimeters,
the parameter Scale must be set to:

Scale =
mm

µm
=

1 · 10−3m

1 · 10−6m
= 1000 (3.2)

3.3.3 World Coordinates for Contours

If you want to convert an XLD object containing pixel coordinates into world coordinates, the opera-
tor contour_to_world_plane_xld can be used. Its parameters are similar to those of the operator
image_points_to_world_plane, as can be seen from the following example program.

lines_gauss (ImageReduced, Lines, 1, 3, 8, 'dark', 'true', 'bar-shaped', \

'true')
contour_to_world_plane_xld (Lines, ContoursTrans, CamParam, PoseAdapted, 1)

3.3.4 World Coordinates for Regions

In HALCON, regions cannot be transformed directly into the world coordinate system. Instead, you must first
convert them into XLD contours using the operator gen_contour_region_xld, then apply the transformation to
these XLD contours as described in the previous section.

If the regions have holes and if these holes would influence your further calculations, set the parameter Mode of the
operator gen_contour_region_xld to ’border_holes’. Then, in addition to the outer border of the input region
the operator gen_contour_region_xld returns the contours of all holes.

3.3.5 Transforming World Coordinates into Image Coordinates

In this section, the transformation between image coordinates and world coordinates is performed in the opposite
direction, i.e., from world coordinates to image coordinates. This is useful if you want to visualize information
given in world coordinates or it may be helpful for the definition of meaningful regions of interest (ROI).

First, the world coordinates must be transformed into the camera coordinate system. For this, the homogeneous
transformation matrix CCSHWCS is needed, which can easily be derived from the pose of the measurement plane

3.3 Transforming Image into World Coordinates and Vice Versa C-79

with respect to the camera by the operator pose_to_hom_mat3d. The transformation itself can be carried out using
the operator affine_trans_point_3d. Then, the 3D coordinates, now given in the camera coordinate system,
can be projected into the image plane with the operator project_3d_point. An example program is given in the
following:

There, the world coordinates of four points defining a rectangle in the WCS are defined.

ROI_X_WCS := [-2, -2, 112, 112]

ROI_Y_WCS := [0, 0.5, 0.5, 0]

ROI_Z_WCS := [0, 0, 0, 0]

Then, the transformation matrix CCSHWCS is derived from the respective pose.

pose_to_hom_mat3d (FinalPose, CCS_HomMat_WCS)

With this transformation matrix, the world points are transformed into the camera coordinate system.

affine_trans_point_3d (CCS_HomMat_WCS, ROI_X_WCS, ROI_Y_WCS, ROI_Z_WCS, \

CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ)

Finally, the points are projected into the image coordinate system.

project_3d_point (CCS_RectangleX, CCS_RectangleY, CCS_RectangleZ, CamParam, \

RectangleRow, RectangleCol)

3.3.6 Compensate for Lens Distortions Only

All operators discussed above automatically compensate for lens distortions. In some cases, you might want to
compensate for lens distortions only without transforming results or images into world coordinates.

Note that in the following, only the compensation for radial distortions using the division model is described. The
compensation for radial and decentering distortions using the polynomial model is done analogously by replacing
κ = 0 with K1 = K2 = K3 = P1 = P2 = 0.

The procedure is to specify the original internal camera parameters and those of a virtual camera that does not
produce lens distortions, i.e., with κ = 0.

The easiest way to obtain the internal camera parameters of the virtual camera would be to simply set κ to zero.
This can be done directly by changing the respective value of the internal camera parameters.

CamParVirtualFixed := CamParOriginal

set_cam_par_data (CamParVirtualFixed, 'kappa', 0, CamParVirtualFixed)

Alternatively, the operator change_radial_distortion_cam_par can be used with the parameter Mode set to
’fixed’ and the parameter DistortionCoeffs set to 0.

change_radial_distortion_cam_par ('fixed', CamParOriginal, 0, \

CamParVirtualFixed)

Then, for the rectification of the segmentation results, the HALCON operator
change_radial_distortion_contours_xld can be used, which requires as input parameters the origi-
nal and the virtual internal camera parameters. If you want to change the lens distortion of image coordinates
(Row, Col), you can alternatively use change_radial_distortion_points.

change_radial_distortion_contours_xld (Edges, EdgesRectifiedFixed, \

CamParOriginal, CamParVirtualFixed)

The rectification of the segmentation results changes the visible part of the scene (see figure 3.10b). To obtain
virtual camera parameters such that the whole image content lies within the visible part of the scene, the parameter

S
in

gl
e

C
am

er
a

C-80 Metric Measurements in a Specified Plane With a Single Camera

Mode of the operator change_radial_distortion_cam_par must be set to ’fullsize’ (see figure 3.10c). Again,
to eliminate the lens distortions, the parameter DistortionCoeffs must be set to 0, or all coefficients of the
polynomial model must be set to zero, respectively.

change_radial_distortion_cam_par ('fullsize', CamParOriginal, 0, \

CamParVirtualFullsize)

If the lens distortions are eliminated in the image itself using the rectification procedure described in section 3.4.2
on page 86, the mode ’fullsize’ may lead to undefined pixels in the rectified image. The mode ’adaptive’ (see
figure 3.10d) slightly reduces the visible part of the scene to prevent such undefined pixels.

change_radial_distortion_cam_par ('adaptive', CamParOriginal, 0, \

CamParVirtualAdaptive)

The mode ’preserve_resolution’ (see figure 3.10e) works similar to the mode ’fullsize’ but prevents undefined
pixels by additionally increasing the size of the modified image so that the image resolution does not decrease in
any part of the image.

change_radial_distortion_cam_par ('preserve_resolution', CamParOriginal, 0, \

CamParVirtualPreservedResolution)

Note that this compensation for lens distortions is not possible for pinhole line scan images because of the ac-
quisition geometry of pinhole line scan cameras. To eliminate radial distortions from segmentation results of
pinhole line scan images, the segmentation results must be transformed into the WCS (see section 3.3.2 on page
78, section 3.3.3 on page 78, and section 3.3.4 on page 78).

For telecentric line scan cameras, the lens distortion compensation works in an identical manner as for area scan
cameras. In addition, for telecentric line scan cameras, the motion vector also influences the perceived distortion.
For example, a nonzero Vx component leads to skewed pixels. Furthermore, if Vy 6= Sx/m, where m is the
magnification of the lens, the pixels appear to be non-square. Therefore, for telecentric line scan cameras, up to
three more components can be passed in addition to κ in DistortionCoeffs. These specify the new Vx, Vy , and
Vz components of the motion vector. In particular, setting Vx to 0 and Vy to Sx/m results in square pixels in the
output image if Mode is set to ’fixed’.

3.4 Rectifying Images

For applications like blob analysis or OCR, it may be necessary to have undistorted images. Imagine that an OCR
has been trained based on undistorted image data. Then, it will not be able to recognize characters in heavily
distorted images. In such a case, the image data must be rectified, i.e., the lens and perspective distortions must be
eliminated before the OCR can be applied.

3.4.1 Transforming Images into the WCS

The operator image_to_world_plane rectifies an image by transforming it into the measurement plane, i.e., the
plane z = 0 of the WCS. The rectified image shows no lens and no perspective distortions. It corresponds to an
image captured by a camera that produces no lens distortions and that looks perpendicularly to the measurement
plane.

image_to_world_plane (Image, ImageMapped, CamParam, PoseForCenteredImage, \

WidthMappedImage, HeightMappedImage, \

ScaleForCenteredImage, 'bilinear')

If more than one image must be rectified, a projection map can be determined with the operator
gen_image_to_world_plane_map, which is used analogously to the operator image_to_world_plane, fol-
lowed by the actual transformation of the images, which is carried out by the operator map_image.

3.4 Rectifying Images C-81

(a) (b)

(c) (d)

(e)

Figure 3.10: Eliminating radial distortions: The original image overlaid with (a) edges extracted from the original
image; (b) edges rectified by setting κ to zero; (c) edges rectified with mode ’fullsize’ ; (d) edges
rectified with mode ’adaptive’ ; (e) edges rectified with mode ’preserved_resolution’.

gen_image_to_world_plane_map (Map, CamParam, PoseForCenteredImage, \

WidthOriginalImage, HeightOriginalImage, \

WidthMappedImage, HeightMappedImage, \

ScaleForCenteredImage, 'bilinear')
map_image (Image, Map, ImageMapped)

The size of the rectified image can be chosen with the parameters Width and Height for the opera-
tor image_to_world_plane and with the parameters WidthMapped and HeightMapped for the operator
gen_image_to_world_plane_map. The size of the rectified image must be given in pixels.

The pixel size of the rectified image is specified by the parameter Scale (see also the description of the operator
image_points_to_world_plane in section 3.3.2 on page 78). This parameter is the ratio between the pixel size
of the rectified image and the unit in which the world coordinates of the calibration target are given (equation 3.3).

Scale =
pixel size of rectified image

unit of world coordinates of calibration target
(3.3)

S
in

gl
e

C
am

er
a

C-82 Metric Measurements in a Specified Plane With a Single Camera

In many cases the coordinates of the calibration targets are given in meters. In this case, it is possible to set
the pixel size directly by setting the parameter Scale to ’m’ (corresponding to the value 1.0, which could be set
alternatively for the parameter Scale), ’cm’ (0.01), ’mm’ (0.001), ’microns’ (1e-6), or ’µm’ (again, 1e-6). Then,
if the parameter Scale is set to, e.g., ’µm’, one pixel of the rectified image has a size that corresponds to an area
of 1µm × 1µm in the world. The parameter Scale should be chosen such that in the center of the area of interest
the pixel size of the input image and of the rectified image is similar. Large scale differences would lead to aliasing
or smoothing effects. See below for examples of how the scale can be determined.

The parameter Interpolation specifies whether bilinear interpolation (’bilinear’) should be applied between the
pixels in the input image or whether the gray value of the nearest neighboring pixel (’none’) should be used.

The rectified image ImageWorld is positioned such that its upper left corner is located exactly at the origin of the
WCS and that its column axis is parallel to the x-axis of the WCS. Since the WCS is defined by the external camera
parameters CamPose the position of the rectified image ImageWorld can be translated by applying the operator
set_origin_pose to the external camera parameters. Arbitrary transformations can be applied to the external
camera parameters based on homogeneous transformation matrices. See below for examples of how the external
camera parameters can be set.

In figure 3.11, the WCS has been defined such that the upper left corner of the rectified image corresponds to
the upper left corner of the input image. To illustrate this, in figure 3.11, the full domain of the rectified image,
transformed into the virtual image plane of the input image, is displayed. As can be seen, the upper left corner of
the input image and of the projection of the rectified image are identical.

Note that it is also possible to define the WCS such that the rectified image does not lie or lies only partly within
the imaged area. The domain of the rectified image is set such that it contains only those pixels that lie within the
imaged area, i.e., for which gray value information is available. In figure 3.12, the WCS has been defined such that
the upper part of the rectified image lies outside the imaged area. To illustrate this, the part of the rectified image
for which no gray value information is available is displayed dark gray. Also in figure 3.12, the full domain of the
rectified image, transformed into the virtual image plane of the input image, is displayed. It can be seen that for
the upper part of the rectified image no image information is available.

If several images must be rectified using the same camera parameters the operator
gen_image_to_world_plane_map in combination with map_image is much more efficient than the op-
erator image_to_world_plane because the transformation must be determined only once. In this case, a
projection map that describes the transformation between the image plane and the world plane is generated first by
the operator gen_image_to_world_plane_map. Then, this map is used by the operator map_image to transform
the image very efficiently.

The following example from %HALCONEXAMPLES%\solution_guide\3d_vision\

transform_image_into_wcs.hdev shows how to perform the transformation of images into the world
coordinate system using the operators gen_image_to_world_plane_map together with map_image as well as
the operator image_to_world_plane.

In the first part of the example program the parameters Scale and CamPose are set such that a given point appears
in the center of the rectified image and that in the surroundings of this point the scale of the rectified image is
similar to the scale of the original image.

3.4 Rectifying Images C-83

y c

z c

xc
xc y c z c), ,(Camera coordinate system

r c(),Image coordinate system

xw yw z wWorld coordinate system), ,(
xw

z wyw
Heig

ht
Width

z w
Sca

le
 U

nit

Hw

c

f

c

r

optical center
Camera with

Virtual image plane

Rectified image

Measurement plane (= 0)

Figure 3.11: Projection of the image into the measurement plane.

S
in

gl
e

C
am

er
a

C-84 Metric Measurements in a Specified Plane With a Single Camera

y c

z c

xc
xc y c z c), ,(Camera coordinate system

r c(),Image coordinate system

xw yw z wWorld coordinate system), ,(z wyw

xw

z w

Hw

c

f

c

r

optical center
Camera with

Virtual image plane

Measurement plane (= 0)

Rectified image

Figure 3.12: Projection of the image into the measurement plane with part of the rectified image lying outside the
image area.

3.4 Rectifying Images C-85

First, the size of the rectified image is defined.

WidthMappedImage := 652

HeightMappedImage := 494

Then, the scale is determined based on the ratio of the distance between points in the WCS and of the respective
distance in the ICS.

Dist_ICS := 1

image_points_to_world_plane (CamParam, Pose, CenterRow, CenterCol, 1, \

CenterX, CenterY)

image_points_to_world_plane (CamParam, Pose, CenterRow + Dist_ICS, \

CenterCol, 1, BelowCenterX, BelowCenterY)

image_points_to_world_plane (CamParam, Pose, CenterRow, \

CenterCol + Dist_ICS, 1, RightOfCenterX, \

RightOfCenterY)

distance_pp (CenterY, CenterX, BelowCenterY, BelowCenterX, \

Dist_WCS_Vertical)

distance_pp (CenterY, CenterX, RightOfCenterY, RightOfCenterX, \

Dist_WCS_Horizontal)

ScaleVertical := Dist_WCS_Vertical / Dist_ICS

ScaleHorizontal := Dist_WCS_Horizontal / Dist_ICS

ScaleForCenteredImage := (ScaleVertical + ScaleHorizontal) / 2.0

Now, the pose of the measurement plane is modified such that a given point will be displayed in the center of the
rectified image.

DX := CenterX - ScaleForCenteredImage * WidthMappedImage / 2.0

DY := CenterY - ScaleForCenteredImage * HeightMappedImage / 2.0

DZ := 0

set_origin_pose (Pose, DX, DY, DZ, PoseForCenteredImage)

These calculations are implemented in the HDevelop procedure parameters_image_to_world_plane_centered.

procedure parameters_image_to_world_plane_centered (: : CamParam, Pose,

CenterRow, CenterCol,

WidthMappedImage,

HeightMappedImage:

ScaleForCenteredImage,

PoseForCenteredImage)

which is part of the HDevelop example program
%HALCONEXAMPLES%\solution_guide\3d_vision\transform_image_into_wcs.hdev (see appendix A.2
on page 232).

Finally, the image can be transformed.

gen_image_to_world_plane_map (Map, CamParam, PoseForCenteredImage, \

WidthOriginalImage, HeightOriginalImage, \

WidthMappedImage, HeightMappedImage, \

ScaleForCenteredImage, 'bilinear')
map_image (Image, Map, ImageMapped)

The second part of the example program %HALCONEXAMPLES%\solution_guide\3d_vision\

transform_image_into_wcs.hdev shows how to set the parameters Scale and CamPose such that the
entire image is visible in the rectified image.

First, the image coordinates of the border of the original image are transformed into world coordinates.

full_domain (Image, ImageFull)

get_domain (ImageFull, Domain)

gen_contour_region_xld (Domain, ImageBorder, 'border')
contour_to_world_plane_xld (ImageBorder, ImageBorderWCS, CamParam, Pose, 1)

S
in

gl
e

C
am

er
a

C-86 Metric Measurements in a Specified Plane With a Single Camera

Then, the extent of the image in world coordinates is determined.

smallest_rectangle1_xld (ImageBorderWCS, MinY, MinX, MaxY, MaxX)

ExtentX := MaxX - MinX

ExtentY := MaxY - MinY

The scale is the ratio of the extent of the image in world coordinates and of the size of the rectified image.

ScaleX := ExtentX / WidthMappedImage

ScaleY := ExtentY / HeightMappedImage

Now, the maximum value must be selected as the final scale.

ScaleForEntireImage := max([ScaleX,ScaleY])

Finally, the origin of the pose must be translated appropriately.

set_origin_pose (Pose, MinX, MinY, 0, PoseForEntireImage)

These calculations are implemented in the HDevelop procedure

procedure parameters_image_to_world_plane_entire (Image: : CamParam, Pose,

WidthMappedImage,

HeightMappedImage:

ScaleForEntireImage,

PoseForEntireImage)

which is part of the example program %HALCONEXAMPLES%\solution_guide\3d_vision\

transform_image_into_wcs.hdev (see appendix A.3 on page 232).

If the object is not planar the projection map that is needed by the operator map_image may be determined by the
operator gen_grid_rectification_map, which is described in section 11.3 on page 223.

If only the lens distortions should be eliminated the projection map can be determined by the operator
gen_radial_distortion_map, which is described in the following section.

3.4.2 Compensate for Lens Distortions Only

The principle of the compensation for lens distortions has already be described in section 3.3.6 on page 79.

If only one image must be rectified the operator change_radial_distortion_image can be used. It is used
analogously to the operator change_radial_distortion_contours_xld described in section 3.3.6, with the
only exception that a region of interest (ROI) can be defined with the parameter Region.

change_radial_distortion_image (GrayImage, ROI, ImageRectifiedAdaptive, \

CamParOriginal, CamParVirtualAdaptive)

Again, the internal parameters of the virtual camera that does not show lens distortions can be determined by
setting κ to zero for the division model or K1, K2, K3, P1, and P2 to zero for the polynomial model (see fig-
ure 3.13b). Alternatively, the internal parameters of the virtual camera can be obtained by using the operator
change_radial_distortion_cam_par with the parameter Mode set to ’fixed’ (equivalent to setting κ or the
coefficients of the polynomial model to zero; see figure 3.13b), ’adaptive’ (see figure 3.13c), ’fullsize’ (see fig-
ure 3.13d), or ’preserve_resolution’ (see figure 3.13e).

If more than one image must be rectified, a projection map can be determined with
the operator gen_radial_distortion_map, which is used analogously to the operator
change_radial_distortion_image, followed by the actual transformation of the images, which is car-
ried out by the operator map_image, described in section 3.4.1 on page 80. If a ROI is to be specified, it must be
rectified separately (see section 3.3.4 on page 78).

3.5 Inspection of Non-Planar Objects C-87

(a) (b)

(c) (d)

(e)

Figure 3.13: Eliminating radial distortions: (a) The original image; (b) the image rectified by setting κ to zero; (c) the
image rectified with mode ’fullsize’ ; (d) the image rectified with mode ’adaptive’ ; (e) the image rectified
with mode ’preserved_resolution’.

gen_radial_distortion_map (MapFixed, CamParOriginal, CamParVirtualFixed, \

'bilinear')
map_image (GrayImage, MapFixed, ImageRectifiedFixed)

Note that this compensation for lens distortions is not possible for pinhole line scan images because of the acqui-
sition geometry of pinhole line scan cameras. To eliminate radial distortions from pinhole line scan images, the
images must be transformed into the WCS (see section 3.4.1 on page 80).

For telecentric line scan cameras, the compensation of lens distortions works in and identical manner as for area
scan cameras. See section 3.3.6 on page 79 for further details.

3.5 Inspection of Non-Planar Objects

Note that the measurements described so far will only be accurate if the object to be measured is planar, i.e., if
it has a flat surface. If this is not the case the perspective projection of the pinhole camera (see equation 2.24 on

S
in

gl
e

C
am

er
a

C-88 Metric Measurements in a Specified Plane With a Single Camera

page 26) will make the parts of the object that lie closer to the camera appear bigger than the parts that lie farther
away. In addition, the respective world coordinates are displaced systematically. If you want to measure the top
side of objects with a flat surface that have a significant thickness that is equal for all objects it is best to place the
calibration plate onto one of these objects during calibration. With this, you can make sure that the optical rays are
intersected with the correct plane.

The displacement that results from deviations of the object surface from the measurement plane can be estimated
very easily. Figure 3.14 shows a vertical section of a typical measurement configuration. The measurement plane
is drawn as a thick line, the object surface as a dotted line. Note that the object surface does not correspond to the
measurement plane in this case. The deviation of the object surface from the measurement plane is indicated by
∆z, the distance of the projection center from the measurement plane by z, and the displacement by ∆r. The point
N indicates the perpendicular projection of the projection center (PC) onto the measurement plane.

∆r

∆z
P

Q

N

Object surface
Measurement plane

Camera

z

r

Projection center (PC)

Virtual image plane
P’ = Q’

Figure 3.14: Displacement ∆r caused by a deviation of the object surface from the measurement plane.

For the determination of the world coordinates of point Q, which lies on the object surface, the optical ray from
the projection center of the camera through Q′, which is the projection of Q into the image plane, is intersected
with the measurement plane. For this reason, the operators of the family ..._to_world_plane do not return the
world coordinates of Q, but the world coordinates of point P , which is the perspective projection of point Q′ onto
the measurement plane.

If we know the distance r from P to N , the distance z, which is the shortest distance from the projection center to
the measurement plane, and the deviation ∆z of the object’s surface from the measurement plane, the displacement
∆r can be calculated by:

∆r = ∆z · r
z

(3.4)

Often, it will be sufficient to have just a rough estimate for the value of ∆r. Then, the values r, z, and ∆z can be
approximately determined directly from the measurement setup.

If you need to determine ∆r more precisely, you first have to calibrate the camera. Then you have to select
a point Q′ in the image for which you want to know the displacement ∆r. The transformation of Q′ into the
WCS using the operator image_points_to_world_plane yields the world coordinates of point P . Now, you
need to derive the world coordinates of the point N . An easy way to do this is to transform the camera coor-
dinates of the projection center PC, which are (0, 0, 0)T , into the world coordinate system, using the operator
affine_trans_point_3d. To derive the homogeneous transformation matrix WCSHCCS needed for the above
mentioned transformation, first, generate the homogeneous transformation matrix CCSHWCS from the pose of
the measurement plane via the operator pose_to_hom_mat3d and then, invert the resulting homogeneous trans-
formation matrix (hom_mat3d_invert). Because N is the perpendicular projection of PC onto the measurement
plane, its x and y world coordinates are equal to the respective world coordinates of PC and its z coordinate is

3.5 Inspection of Non-Planar Objects C-89

equal to zero. Now, r and z can be derived as follows: r is the distance from P to N , which can be calculated by
the operator distance_pp; z is simply the z coordinate of PC, given in the WCS.

The following HALCON program (%HALCONEXAMPLES%\solution_guide\3d_vision\
height_displacement.hdev) shows how to implement this approach. First, the camera parameters are
read from file.

read_cam_par ('camera_parameters.dat', CamParam)

read_pose ('pose_from_three_points.dat', Pose)

Then, the deviation of the object surface from the measurement plane is set.

DeltaZ := 2

Finally, the displacement is calculated, according to the method described above.

get_mbutton (WindowHandle, RowQ, ColumnQ, Button)

image_points_to_world_plane (CamParam, Pose, RowQ, ColumnQ, 1, WCS_PX, \

WCS_PY)

pose_to_hom_mat3d (Pose, CCS_HomMat_WCS)

hom_mat3d_invert (CCS_HomMat_WCS, WCS_HomMat_CCS)

affine_trans_point_3d (WCS_HomMat_CCS, 0, 0, 0, WCS_PCX, WCS_PCY, WCS_PCZ)

distance_pp (WCS_PX, WCS_PY, WCS_PCX, WCS_PCY, r)

z := fabs(WCS_PCZ)

DeltaR := DeltaZ * r / z

Assuming a constant ∆z, the following conclusions can be drawn for ∆r:

• ∆r increases with increasing r.

• If the measurement plane is more or less perpendicular to the optical axis, ∆r increases towards the image
borders.

• At the point N , ∆r is always equal to zero.

• ∆r increases the more the measurement plane is tilted with respect to the optical axis.

The maximum acceptable deviation of the object’s surface from the measurement plane, given a maximum value
for the resulting displacement, can be derived by the following formula:

∆z = ∆r · z
r

(3.5)

The values for r and z can be determined as described above.

If you want to inspect an object that has a surface that consists of several parallel planes you can first use equa-
tion 3.5 to evaluate if the measurement errors stemming from the displacements are acceptable within your project
or not. If the displacements are too large, you can calibrate the camera such that the measurement plane corre-
sponds to, e.g., the uppermost plane of the object. Now, you can derive a pose for each plane, which is parallel
to the uppermost plane simply by applying the operator set_origin_pose. This approach is also useful if ob-
jects of different thickness may appear on the assembly line. If it is possible to classify these objects into classes
corresponding to their thickness, you can select the appropriate pose for each object. Thus, it is possible to derive
accurate world coordinates for each object.

Note that if the plane in which the object lies is severely tilted with respect to the optical axis, and if the object has
a significant thickness, the camera will likely see some parts of the object that you do not want to measure. For
example, if you want to measure the top side of a cube and the plane is tilted, you will see the side walls of the
cube as well, and therefore might measure the wrong dimensions. Therefore, it is usually best to align the camera
so that its optical axis is perpendicular to the plane in which the objects are measured. If the objects do not have
significant thickness, you can measure them accurately even if the plane is tilted.

What is more, it is even possible to derive world coordinates for an object’s surface that consists of several non-
parallel planes if the relation between the individual planes is known. In this case, you may define the relative pose
of the tilted plane with respect to an already known measurement plane.

S
in

gl
e

C
am

er
a

C-90 Metric Measurements in a Specified Plane With a Single Camera

RelPose := [0, 3.2, 0, -14, 0, 0, 0]

Then, you can transform the known pose of the measurement plane into the pose of the tilted plane.

pose_to_hom_mat3d (FinalPose, HomMat3D)

pose_to_hom_mat3d (RelPose, HomMat3DRel)

hom_mat3d_compose (HomMat3D, HomMat3DRel, HomMat3DAdapted)

hom_mat3d_to_pose (HomMat3DAdapted, PoseAdapted)

Alternatively, you can use the operators of the family hom_mat3d_..._local to adapt the pose.

hom_mat3d_translate_local (HomMat3D, 0, 3.2, 0, HomMat3DTranslate)

hom_mat3d_rotate_local (HomMat3DTranslate, rad(-14), 'x', HomMat3DAdapted)

hom_mat3d_to_pose (HomMat3DAdapted, PoseAdapted)

Now, you can obtain world coordinates for points lying on the tilted plane, as well.

contour_to_world_plane_xld (Lines, ContoursTrans, CamParam, PoseAdapted, 1)

If the object is to complex to be approximated by planes, or if the relations between the planes are not known, it is
not possible to perform precise measurements in world coordinates using the methods described in this section. In
this case, it is necessary to use two cameras and to apply the HALCON stereo operators described in chapter 5 on
page 117.

3D Position Recognition of Known Objects C-91

Chapter 4

3D Position Recognition of Known
Objects

Estimating the 3D pose of an object is an important task in many application areas, e.g., during completeness
checks or for 3D alignment in robot vision applications (see section 8.7.1 on page 185). HALCON provides
multiple methods to determine the position or pose of known 3D objects.

The most general approach determines the pose of a known 3D object using at least three corresponding points,
i.e., points with known 3D object coordinates for which the corresponding image coordinates are extracted. The
approach is also known as “mono 3D” (section 4.1).

If a model of a known 3D object is available, 3D matching can be applied to locate the object. The available 3D
matching approaches perform a full 3D object recognition, i.e., they not only estimate a pose but first locate the
object in the respective search data. The following approaches are available:

• Shape-based 3D matching (section 4.2 on page 95) can be used to locate a complex 3D object in a single 2D
image. The model of the 3D object must be available as a Computer Aided Design (CAD) model in, e.g.,
DXF, OFF, or PLY format (see the Reference Manual entry of read_object_model_3d for details about
the supported formats) and the object needs “hard geometric edges” to be recognized.

• Surface-based 3D matching (section 4.3 on page 104) can be used to quickly locate a complex 3D object in
a 3D scene, i.e., in a set of 3D points that is available as a so-called 3D object model (see also section 2.3
on page 38). The model of the 3D object must be available also as a 3D object model and can be obtained
either from a CAD model (see the Reference Manual entry of read_object_model_3d for details about
the supported formats) or from a reference 3D scene that is obtained by a 3D reconstruction approach, e.g.,
stereo or sheet of light. Here, the object may also consist of a “smooth surface”. Note that this approach is
also known as “volume matching”.

If the poses of simple 3D shapes like boxes, cylinders, spheres, or planes, which are called “3D primitives”, are
searched in a 3D scene that is available as a 3D object model, the 3D primitives fitting (section 4.5 on page 111)
can be used. There, the 3D scene is segmented into sub-parts so that into each sub-part a primitive of a selected
type can be fitted. For each sub-part the fitting returns the parameters of the best fitting primitive, e.g., the pose for
a fitted plane.

Sometimes, a full 3D object recognition or 3D matching is not necessary because you can estimate the pose of the
object with simpler means. For example, if the object contains a characteristic planar part, you can estimate its 3D
pose from a single image using perspective matching. Similar to the 3D matching approaches, they locate the
object before they estimate its pose. Two approaches are available:

• The calibrated perspective deformable matching determines the 3D pose of a planar object that was defined
by a template object by using automatically derived contours of the object (section 4.6 on page 114).

• The calibrated descriptor-based matching determines the 3D pose of a planar object that was defined by
a template object by using automatically derived distinctive points of the object, which are called “interest
points” (section 4.7 on page 114).

Po
se

E
st

im
at

io
n

C-92 3D Position Recognition of Known Objects

If a circle or rectangle is contained in the plane for which the 3D pose is needed, the pose estimation can be applied
also by a simple circle pose (section 4.8 on page 115) or rectangle pose (section 4.9 on page 116) estimation.
There, the circle or rectangle must be extracted from the image and the internal camera parameters as well as the
dimensions of the circle or rectangle must be known.

An example application for pose estimation in a robot vision system is described in section 8.7.3 on page 187. Note
that an introduction to the different 3D matching approaches can be found also in the Solution Guide I, chapter 11
on page 101. The approaches for the perspective matching are described in more detail in the Solution Guide II-B.

4.1 Pose Estimation from Points

If the internal camera parameters are known, the pose of an object can be determined by a call of the operator
vector_to_pose.

The individual steps are illustrated based on the example program %HALCONEXAMPLES%\solution_guide\

3d_vision\pose_of_known_3d_object.hdev, which determines the pose of a metal part with respect to a
given world coordinate system.

First, the camera must be calibrated, i.e., the internal camera parameters and, if the pose of the object is to be
determined relative to a given world coordinate system, the external camera parameters must be determined. See
section 3.2 on page 61 for a detailed description of the calibration process. The world coordinate system can either
be identical to the calibration plate coordinate system belonging to the calibration plate from one of the calibration
images, or it can be modified such that it fits to some given reference coordinate system (figure 4.1). This can be
achieved, e.g., by using the operator set_origin_pose

set_origin_pose (PoseOfWCS, -0.0568, 0.0372, 0, PoseOfWCS)

or if other transformations than translations are necessary, via homogeneous transformation matrices (section 2.1
on page 13).

pose_to_hom_mat3d (PoseOfWCS, camHwcs)

hom_mat3d_rotate_local (camHwcs, rad(180), 'x', camHwcs)

hom_mat3d_to_pose (camHwcs, PoseOfWCS)

With the homogeneous transformation matrix cHw , which corresponds to the pose of the world coordinate system,
world coordinates can be transformed into camera coordinates.

Then, the pose of the object can be determined from at least three points (control points) for which both the 3D
object coordinates and the 2D image coordinates are known.

The 3D coordinates of the control points need to be determined only once. They must be given in a coordinate
system that is attached to the object. You should choose points that can be extracted easily and accurately from the
images. The 3D coordinates of the control points are then stored in three tuples, one for the x coordinates, one for
the y coordinates, and the last one for the z coordinates.

In each image from which the pose of the object should be determined, the control points must be extracted. This
task depends heavily on the object and on the possible poses of the object. If it is known that the object will not
be tilted with respect to the camera the detection can, e.g., be carried out by shape-based matching (for a detailed
description of shape-based matching, please refer to the Solution Guide II-B, section 3.2 on page 53).

Once the image coordinates of the control points are determined, they must be stored in two tuples that contain the
row and the column coordinates, respectively. Note that the 2D image coordinates of the control points must be
stored in the same order as the 3D coordinates.

In the example program, the centers of the three holes of the metal part are used as control points. Their image
coordinates are determined with the HDevelop procedure determine_control_points,

procedure determine_control_points (Image: Intersections: : RowCenter,

ColCenter)

which is part of the example program %HALCONEXAMPLES%\solution_guide\3d_vision\

pose_of_known_3d_object.hdev.

4.1 Pose Estimation from Points C-93

y cp

z cp
xcp

y c

z c

xc
xc y c z c), ,(Camera coordinate system

Hw

cp

cpH
c

xcp y cp z cp), ,(Calibration plate coordinate system

xw yw z wWorld coordinate system), ,(

Hw

c

xw

z w
yw

optical center
Camera with

Calibration plate

Figure 4.1: Determination of the pose of the world coordinate system.

Now, we simply call the operator vector_to_pose, passing the 3D object coordinates and the 2D image coordi-
nates of the control points together with the internal camera parameters.

vector_to_pose (ControlX, ControlY, ControlZ, RowCenter, ColCenter, \

CamParam, 'iterative', 'error', PoseOfObject, Errors)

If both the pose of the world coordinate system and the pose of the object coordinate system are known with
respect to the camera coordinate system (see figure 4.2), it is easy to determine the transformation matrices for the
transformation of object coordinates into world coordinates and vice versa:

wHo = wHc · cHo (4.1)
= (cHw)−1 · cHo (4.2)

where wHo is the homogeneous transformation matrix for the transformation of object coordinates into world
coordinates and cHw and cHo are the homogeneous transformation matrices corresponding to the pose of the
world coordinate system and the pose of the object coordinate system, respectively, each with respect to the camera
coordinate system.

The transformation matrix for the transformation of world coordinates into object coordinates can be derived by:

oHw = (wHo)−1 (4.3)

Po
se

E
st

im
at

io
n

C-94 3D Position Recognition of Known Objects

y c

z c

xc
xc y c z c), ,(Camera coordinate system

xw yw z wWorld coordinate system), ,(

Hw

c

z o
y o

xo

xo y o z o), ,(Object coordinate system

xw

z w

yw

Hw

o
Ho

w

Ho

c

optical center
Camera with

Object

Figure 4.2: Pose of the object coordinate system and transformation between object coordinates and world coordi-
nates.

The calculations described above can be implemented in HDevelop as follows. First, the homogeneous transfor-
mation matrices are derived from the respective poses.

pose_to_hom_mat3d (PoseOfWCS, camHwcs)

pose_to_hom_mat3d (PoseOfObject, camHobj)

Then, the transformation matrix for the transformation of object coordinates into world coordinates is derived.

hom_mat3d_invert (camHwcs, wcsHcam)

hom_mat3d_compose (wcsHcam, camHobj, wcsHobj)

Now, known object coordinates can be transformed into world coordinates with affine_trans_point_3d.

affine_trans_point_3d (wcsHobj, CornersXObj, CornersYObj, CornersZObj, \

CornersXWCS, CornersYWCS, CornersZWCS)

In the example program %HALCONEXAMPLES%\solution_guide\3d_vision\

pose_of_known_3d_object.hdev, the world coordinates of the four corners of the rectangular hole of

4.2 Pose Estimation Using Shape-Based 3D Matching C-95

the metal part are determined from their respective object coordinates. The object coordinate system and the world
coordinate system are visualized as well as the respective coordinates for the four points (see figure 4.3).

WCS x

y

z

OBJ

x

y

z

Object coordinates: World coordinates:

1

1: (6.39,26.78,0.00) [mm] 1: (44.98,31.58,2.25) [mm]

2

2: (6.27,13.62,0.00) [mm] 2: (49.55,19.62,5.28) [mm]

3

3: (17.62,13.60,0.00) [mm] 3: (60.12,23.73,5.20) [mm]

4

4: (17.68,26.66,0.00) [mm] 4: (55.54,35.58,2.20) [mm]

Figure 4.3: Object coordinates and world coordinates for the four corners of the rectangular hole of the metal part.

4.2 Pose Estimation Using Shape-Based 3D Matching

For the 3D pose estimation with shape-based 3D matching, a 3D shape model is generated from a 3D computer
aided design (CAD) model. The 3D shape model consists of 2D projections of the 3D object seen from different
views. To restrain the needed memory and runtime for the shape-based 3D matching, you should restrict the
allowed pose range of the shape model and thus minimize the number of 2D projections that have to be computed
and stored in the 3D shape model. Analogously to the shape-based matching of 2D structures described in the
Solution Guide II-B, section 3.2 on page 53, the 3D shape model is used to recognize instances of the object in the
image. But here, instead of a 2D position, orientation, and scaling, the 3D pose of each instance is returned.

Figure 4.4: Shape-based 3D matching: (left) original image containing two tile spacers, (right) 3D shape model of
the tile spacer projected in the image with the poses of the found model instances.

Po
se

E
st

im
at

io
n

C-96 3D Position Recognition of Known Objects

If you need the 3D pose of a planar object or a planar object part, we recommend to use the calibrated perspective
deformable matching (see section 4.6 on page 114) or the calibrated descriptor-based matching (see section 4.7
on page 114). Both are significantly faster, because no 2D projections of the model must be computed. Instead, a
single 2D model is derived from images.

In the following, the general proceeding for shape-based 3D Matching is introduced (see section 4.2.1), it is shown
how to generally enhance the matching robustness and speed (see section 4.2.2 on page 99), and tips and tricks for
the handling of specific problems are provided (see section 4.2.3 on page 101).

4.2.1 General Proceeding for Shape-Based 3D Matching

Shape-based 3D matching consists of the following basic steps:

• the 3D object model is accessed from file,

• the 3D shape model is created from it, and

• the 3D shape model is used to search the object in search images.

An example for the shape-based 3D matching of tile spacers is the HDe-
velop example program %HALCONEXAMPLES%\hdevelop\3D-Matching\Shape-Based\

create_shape_model_3d_lowest_model_level.hdev (see figure 4.4 on page 95).

Step 1: Read the 3D object model

The 3D object model describing the search object is loaded in HALCON with the operator
read_object_model_3d. It must be available as a CAD model in one of the supported formats, e.g.,
DXF, STL, or PLY. The list of supported CAD formats and tips on how to obtain a suitable model, including the
specification of the requirements the CAD models must fulfill, are provided with the description of the operator in
the Reference Manual. For additional tips on handling selected CAD formats, please contact your distributor.

read_object_model_3d ('tile_spacer.dxf', 0.0001, [], [], ObjectModel3DID, \

DXFStatus)

Step 2: Create the 3D shape model

The 3D shape model is created with the operator create_shape_model_3d. It needs the 3D object model and
camera parameters as input. Additionally, a set of parameters has to be adjusted. The camera parameters can be
obtained by a camera calibration as is described in detail in section 3.2 on page 61. In the example, the camera
parameters are known and just assigned to the variable CamParam. Before creating the 3D shape model, it is rec-
ommended to prepare the 3D object model for the shape-based 3D matching using prepare_object_model_3d.
Otherwise, the preparation is applied internally within create_shape_model_3d, which may slow down the
application if the same 3D object model is used several times.

gen_cam_par_area_scan_division (0.0269462, -354.842, 1.27964e-005, \

1.28e-005, 254.24, 201.977, 512, 384, \

CamParam)

prepare_object_model_3d (ObjectModel3DID, 'shape_based_matching_3d', 'true', \

[], [])

create_shape_model_3d (ObjectModel3DID, CamParam, 0, 0, 0, 'gba', -rad(60), \

rad(60), -rad(60), rad(60), 0, rad(360), 0.26, 0.27, \

10, 'lowest_model_level', 3, ShapeModel3DID)

The 3D shape model is generated by computing different views of the 3D object model within a user-specified pose
range. The views are obtained by placing virtual cameras around the object model and projecting the 3D object
model into the image plane of each camera position. The resulting 2D shape representations of all views are stored
in the 3D shape model.

An important task is to specify the pose range. To ease this task, imagine a sphere that surrounds the object. On the
surface of the sphere, a camera is placed that looks at the object. Now, the pose range can be defined by restricting
the position of the camera to a part of the sphere’s surface. Additionally, the minimum and maximum distance of
the camera to the object, i.e., the radii of different spheres, must be specified.

4.2 Pose Estimation Using Shape-Based 3D Matching C-97

In the following, the position of the sphere relative to the object and the definition of the surface part are described.
The position of the sphere is defined by placing its center at the center of the object’s bounding box. The radius
of the sphere corresponds to the distance of the camera to the center of the object. To define a specific part of the
sphere’s surface, the geographical coordinates longitude (λ) and latitude (ϕ) are used (see figure 4.5a). For these,
minimum and maximum values are specified so that a quadrilateral on the sphere is obtained (see figure 4.5b).

λ = 0°
ϕ = 0°ϕ = 0°

λ = 90°

λ = 0°

= −90°λ

= −90°ϕ= −90°ϕ

λ min

ϕmin

ϕmax

λ max

ϕ = 90° ϕ = 90°

λ = 90°= −90°λx

z

a) b)

zero meridian

equator

zero meridian

equator

S

N N

S

selected pose
range

yy

z

x

Figure 4.5: Geographic coordinate system: (a) the geographical coordinates longitude (λ) and latitude (ϕ) describe
positions on the sphere’s surface, (b) the minimum and maximum values for λ and ϕ describe a quadri-
lateral on the sphere, which defines the pose range.

To describe the orientation of the geographical coordinate system we introduce an object-centered coordinate
system. This is obtained by moving the origin of the object coordinate system (CAD model) to the center of the
sphere. The xz-plane of the object-centered coordinate system defines the equatorial plane of the geographical
coordinate system. The north pole lies on the negative y-axis. The origin of the geographical coordinate system (λ
= ϕ = 0°), i.e., the intersection of the equator with the zero meridian, lies in the negative z-axis.

To illustrate the above description, let us assume that we have the object model shown in figure 4.6a. For illustrative
purpose additionally the object coordinate system is visualized. In figure 4.6b, the corresponding geographical
coordinate system is shown together with a camera placed at its origin (λ = ϕ = 0°). Consequently, this camera
view corresponds to a bottom view of the object.

Note that the coordinate system introduced here is only used to specify the pose range. The pose resulting from
the shape-based 3D matching always refers to the original object coordinate system used in the CAD file and not
to the center of the object’s bounding box.

In most cases, the specification of the pose range can be simplified by changing the origin of the geographical
coordinate system (i.e., the orientation of the sphere) such that it coincides with a mean viewing direction of the
real camera to the object. This can be achieved by rotating the object-centered coordinate system, which defines
the geographical coordinate system as described above. The rotation can be specified by passing the rotation angles
to the parameters RefRotX, RefRotY, and RefRotZ of the operator create_shape_model_3d. That is, you can
specify the pose range either by adjusting the longitude and latitude, leaving the origin of the sphere at its initial
position, or by rotating the object-centered coordinate system to get a mean reference view and then specify the
pose range in a more intuitive way (see figure 4.7), which is recommended in most cases.

Figure 4.8 on page 99 shows a rotation-symmetric object, for which a reference view is specified. Rotation-
symmetric objects have the specific advantage that they have the same appearance from all directions that are
perpendicular to their rotation axis. Thus, if the mean reference view is selected such that the camera view is
perpendicular to the rotation axis (and the rotation axis crosses the poles of the sphere), the longitude range can
collapse to a single value so that the number of calculated 2D projections is significantly reduced. That is, less
memory is needed and the matching becomes faster. Here, the initial z-axis of the object-centered coordinate
system corresponds to the rotation axis of the object. To obtain the intended reference view, the orientation of the
sphere is changed by rotating the object-centered coordinate system by -90° around its x-axis. Now, the pose range
for ϕ is specified like described before and the pose range for λ is restricted to 0°.

Po
se

E
st

im
at

io
n

C-98 3D Position Recognition of Known Objects

y

z

x

y

z

x

z
x

y

a) b)

N

zero meridian

equator

S

Figure 4.6: Object coordinate systems: (a) original object coordinate system of the CAD model, (b) object-centered
geographical coordinate system obtained by moving the object to the center of the sphere: the camera
is placed on the sphere’s surface at the position λ = ϕ = 0° and the object is placed at the center of the
sphere. Note that in contrast to the previous image, the sphere is tilted, i.e., it is visualized in a way that
the equator is vertical and the zero meridian is completely visible.

α180° +/− 0° +/− α

0° +/− αα0° +/−

λ min/max ϕ min/max

a)

equator

zero meridian

y

z

x

y
x

S N

equator

zero meridian

b)

z

Pose Range

z

y

x

SN

z

y

x

a)

b)

RefRotX RefRotY RefRotZ

0°

180°

0°

0° 0°

0°

Figure 4.7: Specify pose range: (a) only by longitude and latitude, or (b) by additionally rotating the object-centered
coordinate system to a reference view. Note that because of the rotation around the x-axis, the positions
of the poles have changed.

Besides the definition of the pose range, also the camera roll angle, i.e., the allowed range for the rotation of the
virtual camera around its z-axis, must be set. In most cases, it is recommended to allow a full circle for the camera
roll angle. For details, we recommend to read the description of the operator create_shape_model_3d in the
Reference Manual.

Step 3: Find the 3D shape model in search images

With the 3D shape model that was created by create_shape_model_3d or read from file by
read_shape_model_3d, the object can be searched for in images. For the search, the operator
find_shape_model_3d is applied.

4.2 Pose Estimation Using Shape-Based 3D Matching C-99

RefRotX = −90°

RefRotY = 0°

RefRotZ = 0°

z

y

x

S N

z
x

y

zero meridian

a)

N
zero meridian

equator

b)

S

pose range with

ϕ min/max = 0°+/− α
equator

x

y

z

x

y

z

λ min/max = 0° and

Figure 4.8: Change the origin of the geographical coordinate system for (a) a rotation-symmetric object with the z-
axis of the object-centered coordinate system corresponding to the rotation axis such that (b) the z-axis
becomes perpendicular to the rotation axis.

for I := 1 to NumImages by 1

read_image (Image, 'tile_spacers/tile_spacers_color_' + I$'02')
find_shape_model_3d (Image, ShapeModel3DID, 0.7, 0.85, 0, \

['num_matches', 'max_overlap', 'border_model'], \

[3, 0.75, 'true'], Pose, CovPose, Score)

endfor

Several parameters can be set to control the search process. For detailed information, we recommend to read the
description of the operator in the Reference Manual. The operator returns the pose of the matching model, the
standard deviation of the pose, and the score of the found instances of the 3D shape model that describes how
much of the model is visible in the image.

Besides the basic steps, it is often required to inspect the 3D object model or the 3D shape model, to re-use the
3D shape model, or to visualize the result of the matching. These steps are described in the Solution Guide I,
chapter 11 on page 101.

4.2.2 Enhance the Shape-Based 3D Matching

The following sections generally show how to enhance the robustness (section 4.2.2.1) and speed (section 4.2.2.2)
of shape-based 3D matching.

4.2.2.1 Enhance the Robustness

For a robust shape-based 3D matching it is important that the edges of the object are clearly visible in the image.
Thus, the following general tips may help you to enhance your application already when acquiring the images of
the object:

• If possible, use a background with a good contrast to the object, so that the background can be clearly
separated from the object.

• Carefully adjust the lighting for the image acquisition.

To get clearly visible edges of the object in your images, take special care of the lighting condi-
tions. In general, the edges that are included in the 3D shape model should also be visible in
the image. The edges that are included in the model can be adjusted with the generic parameter
min_face_angle of create_shape_model_3d. The effect of this parameter can be inspected by
visualizing the resulting edges with the procedure inspect_object_model_3d, which can be found
in the example program %HALCONEXAMPLES%\hdevelop\Applications\Position-Recognition-3D\

3d_matching_clamps.hdev.

Po
se

E
st

im
at

io
n

C-100 3D Position Recognition of Known Objects

• If possible, use multi-channel images.

Multi-channel, e.g., color images contain more information and thus typically lead to a more robust edge
extraction. An especially robust edge extraction can be obtained if color images are used and the object is
illuminated from different directions by three differently colored, typically red, green and blue, light sources
(see figure 4.9).

Figure 4.9: A fuse illuminated from three different directions by three differently colored light sources.

4.2.2.2 Enhance the Speed

There are several means to speed up the shape-based 3D matching:

• Use a homogeneous background during the image acquisition.

Generally, you should try to adjust the lighting for the image acquisition so that the edges of the object but
no surface texture are visible in the images.

• Reduce the resolution of the image.

A reduced resolution of the image can speed up the online as well as the offline phase of the shape-based
3D matching, because less 2D projections have to be generated. Note that if you reduce the resolution of
the images (e.g., from 1 Megapixel to 640x480 pixels), you must also change the camera parameters used
for the creation of the 3D shape model by adapting Sx, Sy, Cx, Cy, ImageWidth, and ImageHeight (see the
description of write_cam_par in the Reference Manual). For example, if the image is scaled down by a
factor of 0.5, Sx and Sy must be multiplied by 2, whereas Cx, Cy, ImageWidth, and ImageHeight must be
multiplied by 0.5.

• Use a region of Interest.

Using a region of interest, you can speed up the search. The more the region in which the objects are
searched can be restricted, the faster and more robust the search will be. For detailed information see the
Solution Guide I, chapter 3 on page 25 or the Solution Guide II-B, section 2.1.2 on page 18.

• Restrict the pose range.

The more the pose range is restricted while creating a 3D shape model with create_shape_model_3d, the
faster is the search process. But note that only those object instances are found that correspond to the selected
pose range.

• Eliminate unnecessary edges from the 3D shape model.

If edges are contained in the 3D shape model that are not visible in the search image, the performance, i.e.,
the robustness and speed, of the shape-based 3D matching decreases. Especially for objects that contain
curved surfaces, which are approximated by multiple planar faces in the 3D object model, the generic pa-
rameter min_face_angle should be adjusted within create_shape_model_3d to eliminate unnecessary
edges from the 3D shape model. To check which edges are visible with a specific minimum face angle, you
can display the corresponding contours with the operator project_object_model_3d.

4.2 Pose Estimation Using Shape-Based 3D Matching C-101

• Select the value for the number of used pyramid levels as large as possible.

In create_shape_model_3d as well as in find_shape_model_3d, the number of used pyramid levels can
be set by the parameter num_levels. To speed up the search process, the value should be as large as possible,
but the object should be still recognizable in the model. To check a view on the object in a specific pyramid
level, you can query the corresponding contours by the operator get_shape_model_3d_contours.

• Disable the pregeneration of the model views on lower pyramid levels.

When specifying a large pose range, the number of model views on lower pyramid levels may become
very large, which leads to a slow model generation and high memory consumption. To speed up the model
generation, you can disable the pregeneration of the model views on lower pyramid levels using the generic
parameter ’lowest_model_level’ within create_shape_model_3d. Note that you nevertheless obtain
a high accuracy during the search with find_shape_model_3d, because the pose is still refined (but now
on the fly) on the original pyramid level.

• Select the value for MinScore as large as possible.

In find_shape_model_3d you can adjust the parameter MinScore. A large MinScore speeds up the search
process, but allows less invisible edges for the object, so that possibly some objects are not recognized.

• Select the value for Greediness as large as possible.

In find_shape_model_3d you can adjust the parameter Greediness. A large Greediness speeds up the
search process. But because the search becomes less robust, possibly some objects are not recognized.

• Adjust the pose refinement.

In find_shape_model_3d you can adjust the generic parameter pose_refinement. If it is set to none, the
search is fast but the pose is determined with limited accuracy. A trade-off between runtime and accuracy is
to set the pose refinement to least_squares_high. For complex models with a large number of faces it is
reasonable to speed up the pose refinement by splitting it such that some of the needed calculations are al-
ready performed during the creation of the model. Thus, the generic parameter ’fast_pose_refinement’
of create_shape_model_3d is by default set to ’true’. This leads to a faster matching but also to a
higher memory consumption. If the storage is more critical than the speed of the matching, you can set the
parameter to ’false’.

• Check the setting of border_model.

In find_shape_model_3d you can adjust the generic parameter border_model. If it is set to true, also
objects that extend beyond the image borders can be found. Because this is rather time-consuming if you
only search for objects that are completely contained in the image, we recommend to leave the default value
false unchanged.

• Speed up the visualization.

When visualizing the 3D object model or the 3D shape model by projecting them into the image using
project_object_model_3d or project_shape_model_3d, respectively, you can speed up the visual-
ization by setting the parameter HiddenLineRemoval to false. Then, also those edges of the model are
visualized that would be hidden by faces.

4.2.3 Tips and Tricks for Problem Handling

In section 4.2.2 on page 99, general tips to enhance the robustness and speed of shape-based 3D matching were
listed. In the following, the focus is on the handling of specific problems, i.e., possible reasons for an unsuccessful,
erroneous, or very slow recognition or model generation are introduced. In particular, possible reasons for problems
and tips to solve them are provided for the cases that

• the model generation is very slow (see section 4.2.3.1),

• the recognition is not successful, i.e., the object is not found (see section 4.2.3.2),

• the object is found, but the estimated object pose is wrong (see section 4.2.3.3 on page 103),

• the object is found in the right pose, but the pose is estimated with low accuracy (see section 4.2.3.4 on page
103), or

• the recognition is successful but very slow (section 4.2.3.5 on page 103).

Po
se

E
st

im
at

io
n

C-102 3D Position Recognition of Known Objects

4.2.3.1 The Model Generation is Very Slow

The computation time of the model generation increases quadratically with the number of faces in the CAD model.
Thus, if the model generation with create_shape_model_3d is very slow, most possibly the CAD model is too
complex. Note that in most cases, a very coarse model is sufficient to locate a 3D object with shape-based 3D
matching. Thus, in case of a very slow model generation, you should eliminate all unimportant details from
your model using suitable CAD software. Alternatively, you can also increase the value of the generic parameter
’lowest_model_level’ to work with a coarser model. Additionally, only the part of the object that is relevant
for the search should be contained in the model. Thus, sometimes further modifications of the CAD model using
suitable CAD software might be necessary.

4.2.3.2 The Object is not Found

If the object is not found with find_shape_model_3d, typically the reason can be found in at least one of the
following problems:

• The value of the parameter MinScore was chosen too large. Check if the object can be found if matches
with a smaller score are accepted. But note that the possibility of finding false matches increases with a
decreasing MinScore value.

• The value of the parameter Greediness was chosen too large. A large value leads to a fast but less robust
search. Check if the object can be found with a smaller Greediness value.

• The value of the parameter NumLevels was estimated or chosen too large. Note that the shape representation
of the views on the highest pyramid level must still be recognizable and must contain enough model points.
You can visually check the views on the specific pyramid levels using get_shape_model_3d_contours.

• The value of the generic parameter ’min_face_angle’ was chosen too small when generating the 3D shape
model with create_shape_model_3d. Thus, the 3D shape model contains also non-visible object edges.
Note that after creating a model, you can visually check the model edges on the specific pyramid levels using
get_shape_model_3d_contours. Before creating a model, you can display the contours of the underlying
3D object model with a specific minimum face angle using the operator project_object_model_3d.

• The chosen reference pose or the pose range are not correct. Check whether the created views cover the
desired pose range. Note that you can query the number of created views for each pyramid level using
get_shape_model_3d_params (setting GenParamName to ’num_views_per_level’). Then, you can vi-
sually check selected views out of this range of views using get_shape_model_3d_contours.

• The value of the parameter MinContrast was chosen too large when generating the 3D shape model with
create_shape_model_3d. Thus, edges that belong to the object are not extracted in the search image and
the matching score decreases. Check the value of MinContrast by extracting edges in the search image
using edges_image with the parameter Filter set to ’sobel_fast’ and the parameters Low and High set
to the value of MinContrast.

• The camera parameters are not accurate enough. Thus, the projected model and the imaged object do not
accurately fit together. If possible, improve the accuracy of the calibration. Otherwise, stop the search on
a higher pyramid level where the differences between the projected model and the imaged object are small
enough. To stop the search on a higher pyramid level, the parameter NumLevels is set as a tuple consisting
of the highest and lowest used pyramid levels.

• The projected model and the imaged object do not accurately fit together because the CAD file is not modeled
accurately enough or the objects do not exactly correspond to the model, e.g., because of tolerances at the
fabrication. In the first case, if possible, improve the accuracy of the CAD model. Otherwise, stop the search
on a higher pyramid level where the differences between the projected model and the imaged object are small
enough. To stop the search on a higher pyramid level, the parameter NumLevels is set as a tuple consisting
of the highest and lowest used pyramid levels.

• Some of the object edges are no “sharp” edges. Model the round edges in the CAD model or stop the search
on a higher pyramid level where the differences between the projected model and the imaged object are small
enough. To stop the search on a higher pyramid level, the parameter NumLevels is set as a tuple consisting
of the highest and lowest used pyramid levels.

• The object edges are not visible in the image. To enhance the visibility of the edges during the image
acquisition, follow the advice for a robust shape-based matching that is given in section 4.2.2.1 on page 99.

4.2 Pose Estimation Using Shape-Based 3D Matching C-103

4.2.3.3 The Object is Found in a Wrong Pose

If the object is found with find_shape_model_3d, but the estimated pose is wrong, typically the reason can be
found in at least one of the following problems:

• The value of the parameter MinScore was chosen too small so that false matches could be found. Check if
the object still can be found with a larger MinScore value.

• The value of the generic parameter ’min_face_angle’ was chosen too large when generating the 3D shape
model with create_shape_model_3d. Thus, the 3D shape model does not contain all visible object edges.
Note that after creating a model, you can visually check the model edges on the specific pyramid levels using
get_shape_model_3d_contours. Before creating a model, you can display the contours of the underlying
3D object model with a specific minimum face angle using the operator project_object_model_3d.

• The value of the parameter MinContrast was chosen too small when generating the 3D shape model
with create_shape_model_3d. This leads to clutter edges in the search image. Check the value of
MinContrast by extracting edges in the search image using edges_image with the parameter Filter

set to ’sobel_fast’ and the parameters Low and High set to MinContrast.

• The background contains too much clutter. To solve this problem for one-channel images, you can set
’metric’ to ’ignore_part_polarity’. But if possible, you should use another background, which is
more homogeneous. If the background cannot be changed, you can try to optimize its appearance in the
images by using a diffuse lighting source and by adjusting the light’s direction. Note that you can check the
background by extracting edges in the search image using edges_image with the parameter Filter set to
’sobel_fast’ and the parameters Low and High set to the value of MinContrast.

• The pose range contains degenerated views, i.e., views that do not significantly represent the object anymore.
For example, if a cube is viewed exactly orthogonal to one of its faces, the view collapses from a perspective
representation of a 3D cube to a simple square. Such a view may lead to many false matches. An even
more extreme example is an exact side-view on a flat object. There, the view may collapse to a straight line.
Such a view would lead to many matches in any search image, even if the actual 3D object is not contained.
Therefore, you should limit the pose range as much as possible and ensure that no degenerated views are
contained in the pose range.

• There are too many clutter edges around the object, which is typical for some bin picking applications where
objects touch or overlap each other. Try to separate the objects, e.g., by dumping the objects onto a plane
and/or shaking the bin or plane to equally distribute the objects.

4.2.3.4 The Object Pose is Estimated With Low Accuracy

If the object is found with find_shape_model_3d, but the accuracy of the estimated object pose is low, typically
the reason can be found in at least one of the following problems:

• Some of the object edges are no “sharp” edges. Model the round edges in the CAD model or stop the search
on a higher pyramid level where the differences between the projected model and the imaged object are small
enough. To stop the search on a higher pyramid level, the parameter NumLevels is set as a tuple consisting
of the highest and lowest used pyramid levels.

• The camera parameters are not accurate enough. Thus, the projected model and the imaged object do not
accurately fit together. If possible, improve the accuracy of the calibration.

• The projected model and the imaged object do not accurately fit together because the CAD file is not modeled
accurately enough or the objects do not exactly correspond to the model, e.g., because of tolerances at the
fabrication. In the first case, if possible, improve the accuracy of the CAD model.

4.2.3.5 The Object Recognition is Very Slow

If the object is found with find_shape_model_3d, but the recognition is very slow, typically the reason can be
found in at least one of the following problems:

• The value of the parameter Greediness was chosen too small. A larger value speeds up the search, but
because the search becomes less robust, possibly some objects are not recognized. Thus, you should check
if the object can still be found with a larger Greediness value.

Po
se

E
st

im
at

io
n

C-104 3D Position Recognition of Known Objects

• The value of the parameter MinScore was chosen too small so that many false matches could be found.
Check if the object still can be found with a larger MinScore value.

• The value of the parameter MinContrast was chosen too small when generating the 3D shape model with
create_shape_model_3d. This leads to clutter edges in the search image. These clutter edges generate
many matching candidates that must be examined. Check the value of MinContrast by extracting edges in
the search image using edges_image with the parameter Filter set to ’sobel_fast’ and the parameters
Low and High set to the value of MinContrast.

• The CAD model is very complex and ’fast_pose_refinement’ was set to ’false’ when generat-
ing the 3D shape model with create_shape_model_3d. As the computation time of the least-squares
refinement increases quadratically with the number of faces in the CAD model, you can speed up the
recognition by eliminating all important details from the model using your CAD software and setting
’fast_pose_refinement’ to ’true’.

• The image size, especially the extent of the search object in pixels, is very large so that the number of
model views on lower pyramid levels becomes very large, too. If you cannot work with images of a reduced
resolution as is described in section 4.2.2.2 on page 100, we strongly recommend to restrict the search in the
image to an ROI and to increase the value of ’lowest_model_level’ when generating the 3D shape model
with create_shape_model_3d.

• The pose range is too large. When generating the 3D shape model with create_shape_model_3d, restrict
the pose range as much as possible, especially take care of DistMin. Additionally, for objects with multiple
stable poses you should use multiple models. That is, instead of generating one model that covers the
complete pose range, multiple models each covering one stable pose should be used. Note that you can also
restrict the pose range by exploiting rotational symmetries of the object (see section 4.2.1 on page 97).

• The background contains too much clutter so that the clutter edges in the search image lead to many matching
candidates that must be examined. To solve this problem for one-channel images, you can set ’metric’ to
’ignore_part_polarity’. But if possible, you should use another background, which is more homoge-
neous. If the background cannot be changed, you can try to optimize its appearance in the images by using
a diffuse light source and by adjusting the light’s direction. Note that you can check the background by
extracting edges in the search image using edges_image with the parameter Filter set to ’sobel_fast’

and the parameters Low and High set to the value of MinContrast.

4.3 Pose Estimation Using Surface-Based 3D Matching

For the 3D pose estimation with surface-based matching, a surface model is generated from a 3D object model
that was obtained either from a 3D computer aided design (CAD) model or from a 3D reconstruction approach,
e.g., stereo vision (chapter 5 on page 117) or sheet of light (chapter 6 on page 147). The surface model consists
of a set of 3D points and the points’ normal vectors. That is, the corresponding information must be provided (at
least implicitly) by the 3D object model. In contrast to the shape-based 3D matching, the instances of the object
are not located in images but in a 3D scene, i.e., in a set of 3D points that is provided as another 3D object model
and which can be obtained by a 3D reconstruction approach, too.

In the following, the general proceeding for surface-based 3D matching is introduced (see section 4.3.1).

4.3.1 General Proceeding for Surface-Based 3D Matching

Surface-based 3D matching consists of the following basic steps:

• access the 3D object model needed for the creation of the surface model,

• create the surface model from it,

• access the 3D object model that represents the search data, and

• use the surface model to search the object in the search data.

4.3 Pose Estimation Using Surface-Based 3D Matching C-105

Figure 4.10: Surface-based matching: (left) 3D model of engine cover, (right) model instances found in a 3D scene.

An example for the surface-based 3D matching of engine covers (see figure 4.10) is the HDevelop example program
%HALCONEXAMPLES%\hdevelop\3D-Matching\Surface-Based\find_surface_model.hdev.

Step 1: Access the 3D object model needed for the creation of the surface model

In contrast to shape-based 3D matching, for surface-based matching the 3D object model does not need to be
available as CAD model but can also be derived by a 3D reconstruction. If a 3D object model is available as
a CAD model or if the 3D object model was saved to file after an offline 3D reconstruction, it can be accessed
using read_object_model_3d. Suitable file formats are, e.g., DXF, OFF, PLY, or OM3. The format OM3 is a
HALCON-specific format for 3D object models that can be derived from the results of HALCON’s 3D reconstruc-
tion approaches (see figure 2.29 on page 42 in chapter 1). Tips on how to obtain a suitable model, including the
specification of the requirements the CAD models must fulfill, are provided with the description of the operator
read_object_model_3d in the Reference Manual.

In the example program, the 3D object model is not read from file but is derived from X, Y, and Z images that were
obtained by a specific 3D sensor: a “time-of-flight” (TOF) camera. To get the 3D object model of a single engine
cover, a region containing a single engine cover is extracted by a blob analysis from the Z image (see figure 4.11)
and the Z image is reduced to the corresponding ROI.

read_image (Image, ImagePath + 'engine_cover_xyz_01')
decompose3 (Image, Xm, Ym, Zm)

threshold (Zm, ModelZ, 0, 650)

connection (ModelZ, ConnectedModel)

select_obj (ConnectedModel, ModelROI, [10, 9])

union1 (ModelROI, ModelROI)

reduce_domain (Xm, ModelROI, Xm)

The X, Y, and Z images are now transformed into a 3D object model using the operator
xyz_to_object_model_3d. This 3D object model is needed to create the surface model that will serve
as model for the matching.

xyz_to_object_model_3d (Xm, Ym, Zm, ObjectModel3DModel)

Note that for surface-based matching information about the coordinates of the 3D points and their normals is
needed. Thus, if a 3D object model is obtained from a CAD model or from multi-view stereo, the normals or
alternatively a triangular or polygon mesh should be contained in the 3D object model. If the 3D object model does
not already contain normals, e.g., because it has been created from X, Y, and Z images like in the example program,
the normals are automatically determined by create_surface_model. Note that in this case, the orientation of
the normals is ambiguous (see next step).

Step 2: Create the surface model

The operator create_surface_model creates a surface model by sampling the 3D object model with a certain
distance. The sampling distance can be adjusted with the parameter RelSamplingDistance. Note that a smaller

Po
se

E
st

im
at

io
n

C-106 3D Position Recognition of Known Objects

Figure 4.11: A single engine cover extracted from the Z image.

value leads to a slower but more robust matching, whereas a larger value speeds up the matching but at the same
time decreases the robustness.

create_surface_model (ObjectModel3DModel, 0.03, [], [], SFM)

The correct match will only be found if the normals of the model and of the search object point in the same
direction. If the normals must be derived by create_surface_model because they are not available in the 3D
object model, the orientation of the normals is ambiguous and consequently, a suitable orientation of the normals
cannot be ensured. To cope with this, especially if the orientation of the search object may vary considerably, two
models should be created with the generic parameter ’model_invert_normals’ set to ’true’ and ’false’, respectively.
Both models should then be used for matching and the match with the higher score should be selected.

Step 3: Access the 3D object model that represents the search data

Similar to the 3D object model that was needed for the creation of the surface model, the 3D object models in which
the object of interest are searched must be accessed, i.e., they are read from file using read_object_model_3d

or they are derived online by a 3D reconstruction. In the example program, the 3D object models are derived again
from X, Y, and Z images using the operator xyz_to_object_model_3d. Note that a blob analysis is applied to
remove the background plane from the search data.

NumImages := 10

for Index := 2 to NumImages by 1

read_image (Image, ImagePath + 'engine_cover_xyz_' + Index$'02')
decompose3 (Image, X, Y, Z)

threshold (Z, SceneGood, 0, 666)

reduce_domain (X, SceneGood, XReduced)

xyz_to_object_model_3d (XReduced, Y, Z, ObjectModel3DSceneReduced)

Step 4: Find the surface model in the search data

With the surface model that was created by create_surface_model or read from file by read_surface_model,
the object can be searched for in the search data using the operator find_surface_model.

find_surface_model (SFM, ObjectModel3DSceneReduced, 0.05, 0.3, 0.2, \

'true', 'num_matches', 10, Pose, Score, \

SurfaceMatchingResultID)

Several parameters can be set to control the search process. For detailed information, we recommend to read
the description of the operator in the Reference Manual. For each model instance that could be located by the
matching, the operator returns the pose and a score that describes the quality of the match.

4.4 Pose Estimation Using Deformable Surface-Based 3D Matching C-107

After the matching, the result can be visualized. Here, for each match that exceeds a certain score, the 3D object
model is transformed with the corresponding pose and the transformed 3D object models of a specific search scene
are stored in the tuple ObjectModel3DResult.

ObjectModel3DResult := []

for Index2 := 0 to |Score| - 1 by 1

if (Score[Index2] < 0.11)

continue

endif

CPose := Pose[Index2 * 7:Index2 * 7 + 6]

rigid_trans_object_model_3d (ObjectModel3DModel, CPose, \

ObjectModel3DRigidTrans)

ObjectModel3DResult := [ObjectModel3DResult, \

ObjectModel3DRigidTrans]

endfor

The visualization is then applied using visualize_object_model_3d. Actually, the transformed models are
displayed together with the original 3D scene (see figure 4.10 on page 105), i.e., with the 3D object model that is
obtained from the X, Y, and Z images from which also the search data was obtained, but this time no blob analysis
is applied to remove the background plane.

xyz_to_object_model_3d (X, Y, Z, ObjectModel3DScene)

NumResult := |ObjectModel3DResult|

tuple_gen_const (NumResult, 'green', Colors)

tuple_gen_const (NumResult, 'circle', Shapes)

tuple_gen_const (NumResult, 3, Radii)

visualize_object_model_3d (WindowHandle, [ObjectModel3DScene, \

ObjectModel3DResult], [], PoseOut, \

['color_' + [0,Indices],'point_size_0'], \

['gray',Colors,1.0], Message, [], \

Instructions, PoseOut)

Besides the basic steps, it is often required to inspect the 3D object model, to re-use the surface model, or to
visualize the result of the matching. These steps are described in the Solution Guide I, chapter 11 on page 101.

The procedure debug_find_surface_model can be used to further visualize and debug the matching and the
used parameters.

4.4 Pose Estimation Using Deformable Surface-Based 3D Match-
ing

Deformable surface-based 3D matching allows to find 3D objects in 3D scenes even if the 3D objects are deformed
to a certain degree (see figure 4.12).

For the 3D pose estimation with deformable surface-based 3D matching, a deformable surface model is generated
from a 3D object model that was obtained either from a 3D computer aided design (CAD) model, from a 3D
reconstruction approach, e.g., stereo vision (chapter 5 on page 117) or sheet of light (chapter 6 on page 147),
or directly by a 3D sensor. The deformable surface model consists of a set of 3D points and the points’ normal
vectors. That is, the corresponding information must be provided (at least implicitly) by the 3D object model. In
contrast to the shape-based 3D matching, the instances of the object are not located in images but in a 3D scene,
i.e., in a set of 3D points that is provided as another 3D object model and which can be obtained by one of the
above mentioned approaches or sensors.

4.4.1 General Proceeding for Deformable Surface-Based 3D Matching

Deformable surface-based 3D matching consists of the following basic steps:

• provide the 3D object model for the creation of the deformable surface model,

Po
se

E
st

im
at

io
n

C-108 3D Position Recognition of Known Objects

(a) (b)

(c) (d)

Figure 4.12: Deformable Surface-based matching: (a) The silicone baking mold used as test object, (b) a 3D
object model of the silicone baking mold, (c) a 3D scene that shows a deformed baking mold, and (d)
matching result (deformed object and reference points).

• create the deformable surface model with create_deformable_surface_model,

• optionally define some reference points with
add_deformable_surface_model_reference_point,

• optionally extend the range of deformations that the deformable surface model is able to cope with,

• provide a 3D scene that represents the search data,

• search for the (possibly) deformed 3D object in the search data with find_deformable_surface_model,
and

The HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Matching\

Deformable-Surface-Based\find_deformable_surface_model.hdev shows how to use the deformable
surface-based 3D matching to find even deformed silicone baking molds (see figure 4.12a).

Step 1: Provide the 3D object model needed for the creation of the deformable surface model

In contrast to shape-based 3D matching, for deformable surface-based matching, the 3D object model does not
need to be available as CAD model but can also be provided by a 3D sensor or be derived by a 3D reconstruction.
For more information on the possible sources for 3D data, see section 4.3.1 on page 104.

In the example program, the 3D object model is provided as CAD model (see figure 4.12b). This kind of data
source was mainly chosen for visualization reasons. With this, it is easier to distinguish the deformed model from
the search scene.

4.4 Pose Estimation Using Deformable Surface-Based 3D Matching C-109

Note that for deformable surface-based matching information about the coordinates of the 3D points and their
normals is needed. Thus, if a 3D object model is obtained from a CAD model or from multi-view stereo, the
normals or a triangular or polygon mesh should be contained in the 3D object model.

Step 2: Create the deformable surface model with create_deformable_surfabe_model

The operator create_deformable_surface_model creates a deformable surface model by sampling the
3D object model with a certain distance. The sampling distance can be adjusted with the parameter
RelSamplingDistance. Note that a smaller value leads to a slower but more robust matching, whereas a larger
value speeds up the matching but at the same time decreases the robustness.

create_deformable_surface_model (ObjectModel3DReference, 0.03, 'stiffness', \

0.85, DeformableSurfaceModel)

If the 3D object model does not contain normals, they are determined by create_deformable_surface_model

automatically. Note that in this case, the orientation of the normals is ambiguous. Internally, they are automatically
oriented such that all normals have a positive z component.

The correct match will only be found if the normals of the model and of the search object point in the same
direction. If the orientation of the search object may vary considerably, some effort should be made to orient the
normals of the search object consistently with those of the model. E.g., it might be helpful to check whether all
normals point away from the center of gravity of the object and to flip those normals that do not. Of course, this
correction of the normals must be performed for both the model and the search object. Another possibility is to
create two models with the generic parameter ’model_invert_normals’ set to ’true’ and ’false’, respectively. Both
models can then be used for matching and the match with the higher score should be selected.

Step 3: Optionally define reference points with
add_deformable_surface_model_reference_point

It is possible to define a set of reference points with
add_deformable_surface_model_reference_point.

add_deformable_surface_model_reference_point (DeformableSurfaceModel, \

ReferencePointX, \

ReferencePointY, \

ReferencePointZ, \

ReferencePointIndex)

Reference points are 3D points that can be placed at any position, i.e., it is not necessary that they lie on the ob-
ject’s surface. After a — possibly deformed — object has been found with find_deformable_surface_model,
the respective 3D position of the reference points in the deformed scene can be determined with
get_deformable_surface_matching_result.

find_deformable_surface_model (DeformableSurfaceModel, \

ObjectModel3DSearchSceneForDef, 0.03, 0, [], \

[], Score, DeformableSurfaceMatchingResult)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_x', 'all', \

ReferencePointXDeformed)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_y', 'all', \

ReferencePointYDeformed)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_z', 'all', \

ReferencePointZDeformed)

Reference points are, e.g., helpful to determine the grasping points for the deformed 3D object.

Step 4: Optionally extend the range of deformations that the deformable surface model is able to cope
with

The supported range of deformations can be extended if information about the expected deformations is added to
the deformable surface model.

Po
se

E
st

im
at

io
n

C-110 3D Position Recognition of Known Objects

First, provide 3D scenes that contain deformed instances of the 3D object, then, detect those instances with
find_deformable_surface_model, and finally, add the found deformed objects to the deformable surface
model with add_deformable_surface_model_sample to extend the range of deformations that the deformable
surface model is able to cope with.

To make the matching in the 3D scenes used for the model extension faster and more robust, in the example
program, the background is eliminated from the reconstructed 3D scene by eliminating all points that are close to
the (known) background plane.

gen_plane_object_model_3d (PlanePose, [], [], ObjectModel3DPlane)

distance_object_model_3d (ObjectModel3D, ObjectModel3DPlane, [], 0, [], [])

get_object_model_3d_params (ObjectModel3D, '&distance', Distances)

select_points_object_model_3d (ObjectModel3D, '&distance', \

MinDistanceToPlane, max(Distances), \

ObjectModel3DThresholded)

In the resulting 3D scene, the deformed object is detected with find_deformable_surface_model and the found
deformed object is added to the deformable surface model with add_deformable_surface_model_sample:

find_deformable_surface_model (DeformableSurfaceModel, \

ObjectModel3DSearchSceneForDef, 0.03, 0, [], \

[], Score, DeformableSurfaceMatchingResult)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'deformed_sampled_model', 0, \

ObjectModel3DDeformedSampled)

add_deformable_surface_model_sample (DeformableSurfaceModel, \

ObjectModel3DDeformedSampled)

Step 5: Provide a 3D scene that represents the search data

The 3D scene in which the object of interest is searched for must be provided as a 3D object model (see fig-
ure 4.12c), similar to the 3D object model that was used for the creation of the deformable surface model or for the
extension of the supported deformation range. Typically, the 3D object models used for the search are acquired by
3D sensors or reconstructed from stereo image data.

Step 6: Use the deformable surface model to search for the object in the search data

With the deformable surface model that was created with create_deformable_surface_model or read from
file with read_deformable_surface_model, the deformed object can be searched for in the search data using
the operator find_deformable_surface_model.

find_deformable_surface_model (DeformableSurfaceModel, \

ObjectModel3DSearchSceneForDef, 0.03, 0, [], \

[], Score, DeformableSurfaceMatchingResult)

Several parameters can be set to control the search process. For detailed information, we recommend to read the
description of the operator find_deformable_surface_modelin the Reference Manual. If a model instance was
found, the operator returns a score that describes the quality of the match and a handle that contains the results,
like the deformed position of the reference points.

After the matching, the result can be visualized. For this, the deformed reference model can be determined with
get_deformable_surface_matching_result:

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'deformed_model', 0, \

ObjectModel3DDeformed)

The position of the reference points — transformed to the deformed 3D object that was found — can be determined
with get_deformable_surface_matching_result. It can, e.g., be used to grasp the deformed object.

4.5 Pose Estimation Using 3D Primitives Fitting C-111

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_x', 'all', \

ReferencePointXDeformed)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_y', 'all', \

ReferencePointYDeformed)

get_deformable_surface_matching_result (DeformableSurfaceMatchingResult, \

'reference_point_z', 'all', \

ReferencePointZDeformed)

In the example, the deformed 3D object model is visualized together with the reference points on top of the search
scene (see figure 4.12d on page 108).

Note that, especially, if the object does not have a distinct 3D shape, e.g., because most of the points have a similar
height, it might be necessary to manually eliminate the background and other objects from the 3D scene to ensure
a proper matching result. Otherwise, the object might be found in the background because a relatively flat object
fits perfectly to a relatively flat background, especially if deformations of the object are allowed.

4.5 Pose Estimation Using 3D Primitives Fitting

3D primitives fitting determines amongst others the positions or 3D poses of simple 3D shapes, so-called “3D
primitives”, that are fitted into segmented parts of a 3D scene. The 3D scene is a set of 3D points that is available
as 3D object model. It can be obtained, e.g., by stereo vision (chapter 5 on page 117) or sheet of light (section 6.1
on page 147). The available types of 3D primitives comprise a sphere, a cylinder, and a plane. When fitting 3D
primitives into the segmented 3D data, the results comprise a radius and position for a sphere, a radius and 3D pose
for a cylinder, and a 3D pose for a plane.

Figure 4.13: 3D primitives fitting: (left) segmentation of 3D object model, (right) result of the fitting.

The fitting typically consists of two steps. The first step is the segmentation of the 3D scene into sub-sets of
neighbored 3D points that may correspond to selected types of 3D primitives (see figure 4.13, left). The seg-
mentation can be applied by different means, depending on the input data. In any case, the resulting sub-sets
of 3D points must be available as 3D object models that contain, at least implicitly, the coordinates of the 3D
points and their meshing. The second step is the actual fitting (see figure 4.13, right). There, the operator
fit_primitives_object_model_3d tries to find the best fitting 3D primitive for an individual 3D object model.
The result is another 3D object model from which the parameters of the successfully fitted primitive can be queried.

An example for a 3D primitives fitting that uses a simple 2D segmentation to derive the 3D object model of
a single cylinder from a 3D scene that is provided by X, Y, and Z images is the HDevelop example program
%HALCONEXAMPLES%\hdevelop\3D-Tools\3D-Segmentation\fit_primitives_object_model_3d.hdev.

The individual channels of the image are accessed with access_channel (see figure 4.14). Then, a threshold
is applied to the Z image to separate the cylinder from the background (see figure 4.15). The corresponding

Po
se

E
st

im
at

io
n

C-112 3D Position Recognition of Known Objects

Figure 4.14: Height data used for 3D primitives fitting: (from left to right) X, Y, and Z image.

ROI is created with reduce_domain. From the reduced image channels, a 3D object model is created using
xyz_to_object_model_3d.

read_image (XYZ, '3d_machine_vision/segmentation/3d_primitives_xyz_02.tif')
access_channel (XYZ, X, 1)

access_channel (XYZ, Y, 2)

access_channel (XYZ, Z, 3)

threshold (Z, Region, 0.0, 0.83)

reduce_domain (X, Region, XTmp)

xyz_to_object_model_3d (XTmp, Y, Z, ObjectModel3DID)

A 3D primitive of the ’primitive_type’ ’cylinder’ is fitted into the 3D object model using the operator
fit_primitives_object_model_3d.

ParFitting := ['primitive_type', 'fitting_algorithm', 'output_xyz_mapping']
ValFitting := ['cylinder', 'least_squares_huber', 'true']
fit_primitives_object_model_3d (ObjectModel3DID, ParFitting, ValFitting, \

ObjectModel3DOutID)

Figure 4.15: 3D primitives fitting: (left) simple threshold for 2D segmentation, (right) result returned by the fitting.

The result of the fitting is a handle for a 3D object model from which information like the primitive’s parameters
can be queried with get_object_model_3d_params.

Often, a simple 2D segmentation is not suitable, e.g., because the 3D data is not derived from Y,
X, and Z images or because the 3D scene consists of several 3D structures that touch or over-
lap. Then, a 3D segmentation using the operator segment_object_model_3d has to be applied as is
shown in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Object-Model\Segmentation\

segment_object_model_3d.hdev. There, the individual objects can not be separated by a simple 2D segmenta-
tion, because they overlap (see figure 4.16). The 3D data is accessed again from X, Y, and Z images, but this time,
the 3D object model is created without a preceding 2D segmentation.

4.5 Pose Estimation Using 3D Primitives Fitting C-113

read_image (XYZ, '3d_machine_vision/segmentation/3d_primitives_xyz_01.tif')
access_channel (XYZ, X, 1)

access_channel (XYZ, Y, 2)

access_channel (XYZ, Z, 3)

xyz_to_object_model_3d (X, Y, Z, ObjectModel3DID)

Figure 4.16: Height data used for 3D primitives fitting: (from left to right) X, Y, and Z image.

Instead, the derived 3D object model is prepared for a 3D segmentation by calling the operator
prepare_object_model_3d. Note that, if you do not explicitly prepare the 3D object model, the operator is
called internally during the segmentation with segment_object_model_3d, which may slow down the applica-
tion if the same 3D object model is used several times.

prepare_object_model_3d (ObjectModel3DID, 'segmentation', 'false', \

'max_area_holes', 100)

The operator segment_object_model_3d segments the 3D object model into different sub-sets of 3D points that
have similar characteristics like the same orientation of the normals or the same curvature of the underlying surface.
By default, the operator not only segments the 3D scene but already tries to fit primitives of the selected types into
the segments (see figure 4.13 on page 111). Thus, no separate calls to fit_primitives_object_model_3d are
needed. Here, ’primitive_type’ is set to ’all’. That is, for each sub-set of 3D points the best fitting type of
primitive is returned (see figure 4.13 on page 111).

ParSegmentation := ['max_orientation_diff', 'max_curvature_diff', \

'output_xyz_mapping', 'min_area']
ValSegmentation := [0.13, 0.11, 'true', 150]

ParFitting := ['primitive_type', 'fitting_algorithm']
ValFitting := ['all', 'least_squares_huber']
segment_object_model_3d (ObjectModel3DID, [ParSegmentation,ParFitting], \

[ValSegmentation,ValFitting], ObjectModel3DOutID)

The result of the combined segmentation and fitting is a tuple of handles for the 3D object models that represent
the different sub-sets of 3D points. From each of these 3D object models, information like the success of the
fitting, the primitives’ types, and the primitives’ parameters can be queried with get_object_model_3d_params.
Querying the primitive’s parameters, a tuple is returned. The size and content of this tuple depends on the type
of the primitive. In particular, for a cylinder the tuple contains seven values (three for the position, three for the
orientation, and one for the radius), for a sphere it contains four values (three for the position and one for the
radius), and for a plane it contains again four values (three for the unit normal vector and one for the orthogonal
distance of the plane from the origin of the coordinate system). How to access a single parameter from such a tuple
is shown exemplarily for the radius of a cylinder.

Po
se

E
st

im
at

io
n

C-114 3D Position Recognition of Known Objects

for Index := 0 to |ObjectModel3DOutID| - 1 by 1

get_object_model_3d_params (ObjectModel3DOutID[Index], \

'has_primitive_data', HasPrimitiveData)

if (HasPrimitiveData == 'true')
get_object_model_3d_params (ObjectModel3DOutID[Index], \

'primitive_parameter', \

PrimitiveParameter)

get_object_model_3d_params (ObjectModel3DOutID[Index], \

'primitive_type', PrimitiveType)

if (PrimitiveType == 'cylinder')
RadiusCylinder := PrimitiveParameter[6]

endif

endif

endfor

4.6 Pose Estimation Using Calibrated Perspective Deformable
Matching

The perspective deformable matching finds and locates objects that are similar to a template model in an image.
This matching approach uses the contours of the object in the images and is independent of the perspective view
on the object, i.e., perspective deformations are considered when searching the model in unknown images. The
perspective deformable matching can be applied either for a calibrated camera, then the 3D pose of the object
is returned, or for an uncalibrated camera, then only the 2D projective transformation matrix (homography) is
returned.

The perspective deformable matching is suitable for all planar objects or planar object parts that are clearly dis-
tinguishable by their contours. Compared to the shape-based 3D matching (see section 4.2 on page 95 or the
Solution Guide I, chapter 11 on page 101), there is no need to pregenerate different views of an object. Thus, it is
significantly faster. Hence, if you search for planar perspectively deformed objects, we recommend the perspective
deformable matching.

The Solution Guide II-B, section 3.5 on page 100 shows in detail how to apply the approach. Figure 4.17 shows
the poses of engine parts obtained by the HDevelop example %HALCONEXAMPLES%\hdevelop\Applications\

Position-Recognition-3D\locate_engine_parts.hdev.

4.7 Pose Estimation Using Calibrated Descriptor-Based Matching

Similar to the perspective deformable matching, the descriptor-based matching finds and locates objects that are
similar to a template model in an image. Again, the matching can be applied either for a calibrated camera, then
the 3D pose of an object is returned, or for an uncalibrated camera, then only the 2D projective transformation
matrix (homography) is returned.

The essential difference between the descriptor-based and the perspective deformable matching is that the
descriptor-based matching is not based on contours but uses distinctive object points, so-called interest points,
to describe the template and to find the model in the image.

Note that the calibrated descriptor-based matching is suitable mainly to determine the 3D pose of planar objects
with characteristic texture and distinctive object points. For low-textured objects with rounded edges you should
select one of the other pose estimation approaches. Further, the descriptor-based matching is less accurate than
the perspective deformable matching. But on the other hand, it is significantly faster if a large search space, e.g.,
caused by a large scale range, is used.

The Solution Guide II-B, section 3.6 on page 108 shows in detail how to apply the approach. Figure 4.18 shows the
3D pose of a cookie box obtained by the HDevelop example %HALCONEXAMPLES%\hdevelop\Applications\

Object-Recognition-2D\locate_cookie_box.hdev. A comparison between the calibrated descriptor-based
matching and pose estimation methods that use manually extracted correspondences (see section 4.1 on page
92) is provided by the HDevelop example %HALCONEXAMPLES%\hdevelop\Matching\Descriptor-Based\

pose_from_point_correspondences.hdev.

4.8 Pose Estimation for Circles C-115

Figure 4.17: 3D poses of engine parts obtained by a calibrated perspective deformable matching.

Figure 4.18: 3D pose of a cookie box label obtained by a calibrated descriptor-based matching.

4.8 Pose Estimation for Circles

HALCON offers an alternative approach to estimate the pose of 3D circles, which can be applied with less effort
than the previously described approaches. It is based on the known geometrical behavior of perspectively dis-
torted circles. In particular, 3D circles are represented as ellipses in the image. Using the extracted 2D ellipse
of a 3D circle together with the internal camera parameters and the known radius of the circle, the two possible
3D poses of the circle (having the same position but opposite orientations) can be obtained easily using the oper-
ator get_circle_pose. The HDevelop examples %HALCONEXAMPLES%\hdevelop\Transformations\Poses\
get_circle_pose.hdev and %HALCONEXAMPLES%\hdevelop\Applications\Position-Recognition-3D\

3d_position_of_circles.hdev show in detail how to apply the approach.

Po
se

E
st

im
at

io
n

C-116 3D Position Recognition of Known Objects

4.9 Pose Estimation for Rectangles

Additionally to the pose estimation for 3D circles, also the poses of 3D rectangles can be estimated with an
approach that can be applied with less effort than the general approach. It is based on the known geomet-
rical behavior of perspectively distorted rectangles. In particular, a contour is segmented into four line seg-
ments and their intersections are considered as the corners of a quadrangular contour. Using the extracted 2D
quadrangle of the 3D rectangle together with the internal camera parameters and the known size of the rect-
angle, the four (or eight in case of a square) possible 3D poses of the rectangle can be obtained easily using
the operator get_rectangle_pose. The HDevelop examples %HALCONEXAMPLES%\hdevelop\Applications\
Position-Recognition-3D\get_rectangle_pose_barcode.hdev and %HALCONEXAMPLES%\hdevelop\

Applications\Position-Recognition-3D\3d_position_of_rectangle.hdev show in detail how to ap-
ply the approach.

3D Vision With a Stereo System C-117

Chapter 5

3D Vision With a Stereo System

With a stereo system, i.e., with two or more cameras, you can derive 3D information of the surface of arbitrarily
shaped objects. Possible results are distance images, 3D coordinates, or 3D surfaces.

Typical applications of stereo vision comprise, but are not limited to, completeness checks, inspection of ball grid
arrays, etc. Reconstructing surfaces can also serve as a preprocessing step for surface-based 3D matching (see
section 4.3 on page 104) or 3D primitives fitting (see section 4.5 on page 111).

Figure 5.1 shows a surface reconstructed from four stereo images. Figure 5.2 shows an image of a binocular stereo
camera system, the resulting stereo image pair, and the height map that has been derived from the reconstructed
distance image.

Figure 5.1: Left: images of a 4-camera system; right: reconstructed surface (3D object model).

HALCON actually provides two stereo methods:

• Binocular stereo (section 5.3 on page 124) uses exactly two cameras. The result is a disparity image, a
distance image, or 3D coordinates. The latter are returned either for selected points or for the complete view.

• Multi-view stereo (section 5.4 on page 139) can use more than two cameras. Thus, it is able to image the
whole 3D object and not just the surface of a specific view. It returns results in form of 3D surfaces (given
as 3D object models, see page 38) or 3D coordinates of selected points.

Before describing the two methods, we first take a look at some general topics. In particular, we

• introduce you to the principle of stereo vision (section 5.1) and

• show how to calibrate a stereo system (section 5.2 on page 122).

5.1 The Principle of Stereo Vision

Assume the simplified configuration of two parallel looking 1D cameras with identical internal parameters as
shown in figure 5.3. Furthermore, the basis, i.e., the straight line connecting the two optical centers of the two
cameras, is assumed to coincide with the x-axis of the first camera.

S
te

re
o

V
is

io
n

C-118 3D Vision With a Stereo System

������)

PPPPPPq

PPPPPPq

������)

PP
PPPi

Figure 5.2: Top: stereo camera system; center: stereo image pair; bottom: height map.

Then, the image plane coordinates of the projections of the point P (xc, zc) into the two images can be expressed
by

u1 = f
xc

zc
(5.1)

u2 = f
xc − b
zc

(5.2)

where f is the focal length and b the length of the basis.

The pair of image points that results from the projection of one object point into the two images is often referred
to as conjugate points or homologous points.

5.1 The Principle of Stereo Vision C-119

ff

u1 u2

cx

z c

P

b

Image 1 Image 2u u

Figure 5.3: Vertical section of a binocular stereo camera system.

The difference between the two image locations of the conjugate points is called the disparity d:

d = (u2 − u1) = −f · b
zc

(5.3)

Given the camera parameters and the image coordinates of two conjugate points, the zc coordinate of the corre-
sponding object point P , i.e., its distance from the stereo camera system, can be computed by

zc = −f · b
d

(5.4)

Note that the internal camera parameters of both cameras and the relative pose of the second camera in relation to
the first camera are necessary to determine the distance of P from the stereo camera system.

Thus, the tasks to be solved for stereo vision are

1. to determine the camera parameters and

2. to determine conjugate points.

The first task is achieved by the calibration of the stereo camera system, which is described in section 5.2. This
calibration is quite similar to the calibration of a single camera, described in section 3.2 on page 61, in fact, it even
uses the same operators.

The second task is the so-called stereo matching process, which in HALCON is just a call of the operator
binocular_disparity (or binocular_distance, respectively) for the correlation-based stereo and a call of

S
te

re
o

V
is

io
n

C-120 3D Vision With a Stereo System

the operator binocular_disparity_mg (or binocular_distance_mg, respectively) for multigrid stereo. These
operators are described in section 5.3.5, together with the operators doing all the necessary calculations to obtain
world coordinates from the stereo images.

The multi-view surface reconstruction described in section 5.4.2.1 on page 141 extends the basic stereo vision
principle to more than one image pair. There, the matching step is “hidden” in the reconstruction operators, which
use the operator binocular_disparity internally to compute disparity images of the individual stereo image
pairs.

5.1.1 The Setup of a Stereo Camera System

The basic stereo camera system consists of two cameras looking at the same object from different positions (see
figure 5.4). Multi-view stereo systems have additional cameras, but the principle stays the same.

z c

y c

xc

z c

y cxc

f

Virtual image planes

c

r

u

v

cr uv

P’

b

P’

PObject point

left right
Cameras with
optical centers

Figure 5.4: Stereo camera system (r and y axes point towards the reader).

It is very important to ensure that neither the internal camera parameters (e.g., the focal length) nor the relative
pose between the cameras changes during the calibration process or between the calibration process and the ensuing
application of the calibrated stereo camera system, because the calibration remains valid only as long as the cameras
preserve their relative pose. Therefore, it is advisable to mount the cameras on a stable platform.

5.1.2 Resolution of a Stereo Camera System

The manner in which the cameras are placed influences the accuracy of the results that is achievable with the stereo
camera system.

5.1 The Principle of Stereo Vision C-121

The distance resolution ∆z, i.e., the accuracy with which the distance z of the object surface from the stereo
camera system can be determined, can be expressed by

∆z =
z2

f · b ·∆d (5.5)

To achieve a high distance resolution, the setup should be chosen such that the length b of the basis as well
as the focal length f are large, and that the stereo camera system is placed as close as possible to the object. In
addition, the distance resolution depends directly on the accuracy ∆dwith which the disparities can be determined.
If the calibration has been performed accurately and the corresponding calibration error is in the order of 0.1
pixels, the disparities typically can be determined with an accuracy of 1/5 up to 1/10 pixel, which corresponds to
approximately 1µm for a camera with 7.4µm pixel size. Note that generally the disparities cannot be determined
more accurately than the calibration error of the calibration of a stereo camera system.

In figure 5.5, the distance resolutions that are achievable in the ideal case are plotted as a function of the distance
for four different configurations of focal lengths and base lines, assuming ∆d to be 1µm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

D
is

ta
n

c
e
 r

e
so

lu
ti

o
n

 [
m

m
]

Distance [m]

b = 10cm, f = 8mm
b = 10cm, f = 12.5mm
b = 20cm, f = 8mm
b = 20cm, f = 12.5mm

Figure 5.5: Distance resolution plotted over the distance (∆d = 1µm).

Note that if the ratio between b and z is very large, problems during the stereo matching process may occur,
because the two images of the stereo pair differ too much. The maximum reasonable ratio b/z depends on the
surface characteristics of the object. In general, objects with little height differences can be imaged with a higher
ratio b/z, whereas objects with larger height differences should be imaged with a smaller ratio b/z.

If this is difficult to ensure in your application when using two cameras, you should consider using a multi-view
stereo system, i.e., more than two cameras.

5.1.3 Optimizing Focus with Tilt Lenses

For a successful stereo reconstruction, it is necessary that corresponding points of the object appear sharp in both
cameras. In some setups, e.g., when using a large magnification or telecentric lenses, this requirement can be

S
te

re
o

V
is

io
n

C-122 3D Vision With a Stereo System

Figure 5.6: If the depth of field is small while the angle between the two cameras is relatively large, only a small part
of the object plane is in focus (left). With tilt lenses, the focus planes of the cameras can be aligned with
the object plane. This is done, when the condition of the Scheimpflug principle is met. After that, the
whole object surface is in focus (right).

difficult to fulfill. This is because the depth of field is small and the angle between the two cameras is relatively
large. Therefore, the overlapping area, where the object is in focus from both cameras, may not cover the whole
object (see figure 5.6).

In such cases, tilt lenses can be used to adjust the focus planes of each camera to better fit the object plane.
Section 2.2.3 describes the effect of tilt lenses in more detail.

5.2 Calibrating the Stereo Camera System

As mentioned above, the calibration of the stereo camera system is very similar to the calibration of a single camera
(section 3.2 on page 61). The major difference is that it is not sufficient to view the calibration plate from a single
camera, but it must be visible in at least some of the overlapping parts of the images that are taken by each pair of
neighbored cameras (see section 5.2.2 for details). There, it must be completely visible for calibration plates with
rectangularly arranged marks whereas for calibration plates with hexagonally arranged marks at least one finder
pattern must be visible.

In this section only a brief description of the calibration process is given. More details can be found in section 3.2
on page 61. Here, the stereo-specific parts of the calibration process are described in depth. In particular, it is
shown

• how to create and configure the calibration data model for multiple cameras (section 5.2.1),

• how to acquire suitable calibration images (section 5.2.2),

• how to add the observation data of multiple cameras to the calibration data model (section 5.2.3), and

• how to perform the calibration (section 5.2.4 on page 124).

The code fragments used for the following descriptions belong to the HDe-
velop example program %HALCONEXAMPLES%\hdevelop\Calibration\Multi-View\

calibrate_cameras_multiple_camera_setup.hdev.

5.2.1 Creating and Configuring the Calibration Data Model

As described in section 3.2.1 on page 62, the first step of preparing for a calibration is to create the calibration data
model with the operator create_calib_data. In the example, four cameras are used with one calibration object.

NumCameras := 4

NumCalibObjects := 1

create_calib_data ('calibration_object', NumCameras, NumCalibObjects, \

CalibDataID)

5.2 Calibrating the Stereo Camera System C-123

Then, the initial camera parameters are set with the operator set_calib_data_cam_param (see also section 3.2.2
on page 62). The parameter CameraIdx is set to ’all’, so that the values are set for all cameras.

gen_cam_par_area_scan_polynomial (0.0085, 0.0, 0.0, 0.0, 0.0, 0.0, 6e-6, \

6e-6, Width * .5, Height * .5, Width, \

Height, StartCamPar)

set_calib_data_cam_param (CalibDataID, 'all', [], StartCamPar)

Finally, the calibration object is described with the operator set_calib_data_calib_object (see section 3.2.3
on page 67).

CaltabDescr := 'caltab_100mm.descr'
set_calib_data_calib_object (CalibDataID, 0, CaltabDescr)

5.2.2 Acquiring Calibration Images

For the calibration of the stereo camera system, each camera acquires multiple images of one or more calibration
objects in different poses. Note that it is not necessary that the calibration object is always visible in all poses for
each camera. The only requirement is that the cameras can be “connected” in a chain by the calibration object
poses, e.g., that camera 0 and 1 observe the pose 0 of the calibration object, camera 1 and 2 observe pose 3, and
camera 2 and 3 observe pose 8 (see figure 5.7).

camera 0
camera 1

camera 2

Figure 5.7: Cameras are connected in a chain.

Note that when taking the images for the calibration, the recommendations for taking the calibration images for
the single camera calibration (see the section “How to take a set of suitable images?” in the chapter reference
“Calibration”) apply accordingly. More information on the calibration of multi-view camera setups, especially
with mixed (telecentric and perspective) camera setups, can be found in the chapter “Calibration . Multi-View”.

Note that you must not change the camera setup between the acquisition of the calibration images and the acquisi-
tion of the stereo images of the object to be investigated. How to obtain suitable stereo image pairs for the object
to investigate is shown in section 5.3.3 on page 126.

5.2.3 Observing the Calibration Object

As in the case of the single camera calibration, the main input data for the camera calibration are the observed
points of the calibration objects in the camera images (see section 3.2.4 on page 71). Generally, you extract the ob-
servations and then add them to the calibration data model with the operator set_calib_data_observ_points.

S
te

re
o

V
is

io
n

C-124 3D Vision With a Stereo System

If you use a standard HALCON calibration plate as calibration object, you can extract and store the observations
in a single step using find_calib_object. In the example, this operator is called within a double loop over all
poses and all cameras. The code raises a warning if the calibration plate could not be found in an image.

for PoseIndex := 0 to NumPoses - 1 by 1

for CameraIndex := 0 to NumCameras - 1 by 1

read_image (Image, FileName)

Message := ['Camera ' + CameraIndex,'Pose # ' + PoseIndex]

try

find_calib_object (Image, CalibDataID, CameraIndex, 0, \

PoseIndex, [], [])

catch (Exception)

if (Exception[0] == 8402)

Message := [Message,'No calibration tab found!']
elseif (Exception[0] == 8404)

Message := [Message,'Marks were not identified!']
else

Message := [Message,'Unknown Exception!.']
endif

Message := [Message,'This image will be ignored.']
endtry

disp_message (WindowHandles[CameraIndex], Message, 'window', 12, 12, \

Color, 'true')
endfor

endfor

5.2.4 Calibrating the Cameras

The actual calibration of the stereo camera system is carried out with the operator calibrate_cameras (see
section 3.2.6 on page 72).

calibrate_cameras (CalibDataID, Error)

The calibration stores its results in the calibration data model. How to access them is described in separate sections
for binocular stereo (section 5.3.2 on page 126) and multi-view stereo (section 5.4.1.1 on page 140) because the
methods use the results in different forms.

5.3 Binocular Stereo Vision

With the operators for binocular stereo vision, you can compute disparity and distance images and 3D coordinates
using two cameras. In fact, HALCON provides three methods for binocular stereo: correlation-based stereo,
multigrid stereo, and multi-scanline stereo (see section 5.3.1 for the differences).

The following sections show how to

• access the results of the calibration (section 5.3.2 on page 126),

• rectify the stereo images (section 5.3.4 on page 127), and

• reconstruct 3D information (section 5.3.5 on page 130).

If not stated otherwise, the example programs used in this section are

• stereo_calibration.hdev,

• height_above_reference_plane_from_stereo.hdev, and

• 3d_information_for_selected_points.hdev.

5.3 Binocular Stereo Vision C-125

They can be found in the directory solution_guide\3d_vision.

As an alternative to fully calibrated stereo, HALCON offers the so-called uncalibrated stereo vision. Here, the
relation between the cameras is determined from the scene itself, i.e., without needing a special calibration object.
Please refer to section 5.3.6 on page 138 for more information about this method.

5.3.1 Comparison of the Stereo Matching Approaches Correlation-Based, Multi-
grid, and Multi-Scanline Stereo

In HALCON, three approaches for stereo matching are available: the traditionally used correlation-based stereo
matching, the multigrid stereo matching, and the multi-scanline stereo matching.

The correlation-based stereo matching uses correlation techniques to find corresponding points and thus to de-
termine the disparities or distances for the observed image points. The disparities or distances are calculated with
the operators binocular_disparity or binocular_distance, respectively. The correlation-based stereo is
characterized by the following advantages and disadvantages:

Most important advantages of correlation-based stereo:

• fast,

• can be automatically parallelized on multi-core or multi-processor hardware, and

• is invariant against gray-value changes.

Most important disadvantage of correlation-based stereo:

• works good only for significantly textured areas. Areas without enough texture cannot be reconstructed.

The multigrid stereo matching uses a variational approach based on multigrid methods. This approach returns
disparity and distance values also for image parts that contain no texture (as long as these parts are surrounded by
significant structures between which an interpolation of values is possible). The disparities or distances are calcu-
lated with the operators binocular_disparity_mg or binocular_distance_mg, respectively. The multigrid
stereo is characterized by the following advantages and disadvantages:

Most important advantages of multigrid stereo:

• interpolates 3D information for areas without texture based on the surrounding areas,

• in particular for edges, the accuracy in general is higher than for correlation-based stereo, and

• the resolution is higher than for correlation-based stereo, i.e., smaller objects can be reconstructed.

Most important disadvantages of multigrid stereo:

• only partially invariant against gray value changes,

• edges are somewhat blurred, and

• it cannot be parallelized automatically.

The multi-scanline stereo matching uses a multi-scanline optimization. Similar to the multigrid approach, it
returns disparity and distance values also for image parts that contain only little texture but tries to preserve dis-
continuities, which are blurred by the multigrid approach. The disparities or distances are calculated with the
operators binocular_disparity_ms or binocular_distance_ms, respectively. The multi-scanline stereo is
characterized by the following advantages and disadvantages:

Most important advantages of multi-scanline stereo:

• determines 3D information for areas with little texture and

• preserves discontinuities.

Most important disadvantages of multi-scanline stereo:

• runtime increases significantly with image size and disparity search range and

• high memory consumption.

S
te

re
o

V
is

io
n

C-126 3D Vision With a Stereo System

5.3.2 Accessing the Calibration Results

As described in section 3.2.7 on page 72, you access the results of the calibration with the operator
get_calib_data. In addition to the internal camera parameters, we now use the operator also to get the rela-
tive pose between the two cameras.

get_calib_data (CalibDataID, 'camera', 0, 'params', CamParamL)

get_calib_data (CalibDataID, 'camera', 1, 'params', CamParamR)

get_calib_data (CalibDataID, 'camera', 1, 'pose', cLPcR)

If you want to perform the calibration in an offline step, you can save the camera setup model with
write_camera_setup_model.

write_camera_setup_model (CameraSetupModelID, 'stereo_camera_setup.csm')

5.3.3 Acquiring Stereo Images

The following rules help you to acquire suitable stereo image pairs. Section 5.3.3.1 and section 5.3.3.2 provide
you with background information to understand the rules.

• Do not change the camera setup between the acquisition of the calibration images and the acquisition of the
stereo images of the object to be investigated. How to obtain suitable images for the calibration of a stereo
camera system is shown in section 5.2.2 on page 123.

• Ensure a proper illumination of the object, e.g., avoid reflections.

• If the object shows no texture, consider to project texture onto it or use multigrid stereo (see section 5.3.1 on
page 125).

• Place the object such that repetitive patterns are not aligned with the rows of the rectified images.

5.3.3.1 Image Texture

The 3D coordinates of each object point are derived by intersecting the lines of sight of the respective conjugate
image points. The conjugate points are determined by an automatic matching process. This matching process has
some properties that should be accounted for during the image acquisition.

For each point of the first image, the conjugate point in the second image must be determined. This point matching
relies on the availability of texture. The conjugate points cannot be determined correctly in areas without sufficient
texture (figure 5.8).

This applies in particular for the correlation-based (binocular) stereo (which is currently the base for multi-view
stereo). The multigrid (binocular) stereo, however, can interpolate values in areas without texture. But note that
even then, a certain amount of texture must be available to enable the interpolation. In section 5.3.1 on page 125
the differences between both stereo matching approaches are described in more detail.

5.3.3.2 Repetitive Patterns

If the images contain repetitive patterns, the matching process may be confused, since in this case many points
look alike. In order to make the matching process fast and reliable, the stereo images are rectified such that pairs
of conjugate points always have identical row coordinates in the rectified images, i.e., that the search space in the
second rectified image is reduced to a line. With this, repetitive patterns can disturb the matching process only if
they are parallel to the rows of the rectified images (figure 5.9).

5.3 Binocular Stereo Vision C-127

@
@
@R

�
�
�	

Figure 5.8: Rectified stereo images and matching result of the correlation-based stereo in a poorly textured area
(regions where the matching process failed are displayed white).

@
@
@R

�
�
�	

Figure 5.9: Rectified stereo images with repetitive patterns aligned to the image rows and cutout of the matching
result (regions where the matching process failed are displayed white).

5.3.4 Rectifying the Stereo Images

With the internal camera parameters and the relative pose, the stereo images can be rectified, so that conjugate
points lie on the same row in both rectified images.

Note that it is assumed that the parameters of the first image of a pair stem from the left image and the parameters
of the second image stem from the right image, whereas the notations ’left’ and ’right’ refer to the line of sight of

S
te

re
o

V
is

io
n

C-128 3D Vision With a Stereo System

the two cameras (see figure 5.4 on page 120). If the images are used in the reverse order, they will appear upside
down after the rectification.

In figure 5.10 the original images of a stereo pair are shown, where the two cameras are rotated heavily with respect
to each other. The corresponding rectified images are displayed in figure 5.11.

Figure 5.10: Original stereo images.

Figure 5.11: Rectified stereo images.

The rectification itself is carried out using the operators gen_binocular_rectification_map and map_image.
The operator gen_binocular_rectification_map requires the internal camera parameters of both cameras and
the relative pose of the second camera in relation to the first camera.

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR, 1, \

'viewing_direction', 'bilinear', \

RectCamParL, RectCamParR, CamPoseRectL, \

CamPoseRectR, RectLPosRectR)

The parameter SubSampling can be used to change the size and resolution of the rectified images with respect to
the original images. A value of 1 indicates that the rectified images will have the same size as the original images.
Larger values lead to smaller images with a resolution reduced by the given factor, smaller values lead to larger
images.

Reducing the image size has the effect that the following stereo matching process runs faster, but also that less
details are visible in the result. In general, it is proposed not to use values below 0.5 or above 2. Otherwise,
smoothing or aliasing effects occur, which may disturb the matching process.

The rectification process can be described as projecting the original images onto a common rectified image plane.
The method to define this plane can be selected by the parameter Method. So far, two methods are implemented.

5.3 Binocular Stereo Vision C-129

For the method ’geometric’ the orientation of the common rectified image plane is defined by the cross product of
the base line and the line of intersection of the two original image planes. The default method, ’viewing_direction’,
uses the base line as x-axis of the common image plane. The mean of the viewing directions (z-axes) of the two
cameras is used to span the x-z plane of the rectified system. The resulting rectified z-axis is the orientation of the
common image plane and as such located in this plane and orthogonal to the base line.

For perspective cameras, the rectified images can be thought of as being acquired by a virtual stereo camera system,
called rectified stereo camera system, as displayed in figure 5.12. The optical centers of the rectified cameras are
the same as for the real cameras, but the rectified cameras are rotated such that they are looking parallel and that
their x-axes are collinear. In addition, both rectified cameras have the same focal length. Therefore, the two
image planes coincide. Note that the principal point of the rectified images, which is the origin of the image plane
coordinate system, may lie outside the image.

xc

z c

y coptical centers

Rectified images

b

P

c

r
r

c

P’ v

u

f

f

u

P’v

Object point

Rectified cameras with

Figure 5.12: Rectified stereo camera system.

The parameter Interpolation specifies whether bilinear interpolation (’bilinear’) should be applied between
the pixels of the input images or whether the gray value of the nearest pixel (’none’) should be used. Bilinear
interpolation yields smoother rectified images, whereas the use of the nearest neighbor is faster.

The operator returns the rectification maps and the camera parameters of the virtual, rectified cameras.

Finally, the operator map_image can be applied to both stereo images using the respective rectification map gen-
erated by the operator gen_binocular_rectification_map.

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

S
te

re
o

V
is

io
n

C-130 3D Vision With a Stereo System

If the calibration was erroneous, the rectification will produce wrong results. This can be checked very easily by
comparing the row coordinates of conjugate points selected from the two rectified images. If the row coordinates
of conjugate points are different within the two rectified images, they are not correctly rectified. In this case, you
should check the calibration process carefully.

An incorrectly rectified image pair may look like the one displayed in figure 5.13.

Figure 5.13: Incorrectly rectified stereo images.

5.3.5 Reconstructing 3D Information

There are many possibilities to derive 3D information from rectified stereo images.

Non-metrical information: If only non-metrical information about the surface of an object is needed, it may be
sufficient to determine the disparities within the overlapping area of the stereo image pair by using the oper-
ator binocular_disparity for correlation-based stereo (section 5.3.5.1) or binocular_disparity_mg
for multigrid stereo (section 5.3.5.2 on page 132). The differences between both stereo matching approaches
are described in more detail in section 5.3.1 on page 125.

Distance of the object surface: If metrical information is required, the operator binocular_distance (sec-
tion 5.3.5.4 on page 134) or binocular_distance_mg (section 5.3.5.5 on page 136), respectively, can
be used to extract the distance of the object surface from the stereo camera system.

3D coordinate images: Having a disparity image of a rectified binocular stereo system, you can additionally
derive the corresponding x, y, and z coordinates using disparity_image_to_xyz (see section 5.3.5.8 on
page 137).

3D coordinates for selected points: To derive metrical information for selected points only, the operators
disparity_to_distance or disparity_to_point_3d can be used. The first of these two operators
calculates the distance z of points from the stereo camera system based on their disparity (see section 5.3.5.7
on page 137). The second operator calculates the x, y, and z coordinates from the row and column position
of a point in the first rectified image and from its disparity (see section 5.3.5.8 on page 137).

Alternatively, the operator intersect_lines_of_sight can be used to calculate the x, y, and z coordi-
nates of selected points (see section 5.3.5.9 on page 137). Then, there is no need to determine the disparities
in advance. Only the image coordinates of the conjugate points and the camera parameters are needed. This
operator can also handle image coordinates of the original stereo images. Thus, the rectification can be
omitted. In exchange, you must determine the conjugate points by yourself.

Note that all operators that deal with disparities or distances require all input to be based on the rectified images.
This applies to the image coordinates as well as to the camera parameters.

5.3.5.1 Determining Disparities Using Correlation-Based Stereo

Disparities are an indicator for the distance z of object points from the stereo camera system, since points with
equal disparities also have equal distances z (equation 5.4 on page 119).

5.3 Binocular Stereo Vision C-131

Therefore, if it is only necessary to know whether there are locally high objects, it is sufficient to derive the
disparities. For correlation-based stereo, this is done by using the operator binocular_disparity.

binocular_disparity (ImageRectifiedL, ImageRectifiedR, DisparityImage, \

ScoreImageDisparity, 'ncc', MaskWidth, MaskHeight, \

TextureThresh, MinDisparity, MaxDisparity, NumLevels, \

ScoreThresh, 'left_right_check', 'interpolation')

The operator requires the two rectified images as input. The disparities are derived only for those conjugate points
that lie within the respective image domain in both images. With this, it is possible to speed up the calculation of
the disparities if the image domain of at least one of the two rectified images is reduced to a region of interest, e.g.,
by using the operator reduce_domain.

Several parameters can be used to control the behavior of the matching process that is performed by the operator
binocular_disparity to determine the conjugate points:

With the parameter Method, the matching function is selected. The methods ’sad’ (summed absolute differences)
and ’ssd’ (summed squared differences) compare the gray values of the pixels within a matching window directly,
whereas the method ’ncc’ (normalized cross correlation) compensates for the mean gray value and its variance
within the matching window. Therefore, if the two images differ in brightness and contrast, the method ’ncc’
should be preferred. However, since the internal computations are less complex for the methods ’sad’ and ’ssd’,
they are faster than the method ’ncc’.

The width and height of the matching window can be set independently with the parameters MaskWidth and
MaskHeight. The values should be odd numbers. Otherwise they will be increased by one. A larger matching
window will lead to a smoother disparity image, but may result in the loss of small details. In contrast, the results
of a smaller matching window tend to be noisy but they show more spatial details.

Because the matching process relies on the availability of texture, low-textured areas can be excluded from the
matching process. The parameter TextureThresh defines the minimum allowed variance within the matching
window. For areas where the texture is too low, no disparities will be determined.

The parameters MinDisparity and MaxDisparity define the minimum and maximum disparity values. They
are used to restrict the search space for the matching process. If the specified disparity range does not contain the
actual range of the disparities, the conjugate points cannot be found correctly. Therefore, the disparities will be
incomplete and erroneous. On the other hand, if the disparity range is specified too large, the matching process
will be slower and the probability of mismatches increases.

Therefore, it is important to set the parameters MinDisparity and MaxDisparity carefully. There are several
possibilities to determine the appropriate values:

• If you know the minimum and maximum distance of the object from the stereo camera system (sec-
tion 5.3.5.4 on page 134), you can use the operator distance_to_disparity to determine the respective
disparity values.

• You can also determine these values directly from the rectified images. For this, you should display the two
rectified images and measure the approximate column coordinates of the point N , which is nearest to the
stereo camera system (N image1

col and N image2
col) and of the point F , which is the farthest away (F image1

col and
F image2
col), each in both rectified images.

Now, the values for the definition of the disparity range can be calculated as follows:

MinDisparity = N image2
col −N image1

col (5.6)

MaxDisparity = F image2
col − F image1

col (5.7)

The operator binocular_disparity uses image pyramids to improve the matching speed. The disparity range
specified by the parameters MinDisparity and MaxDisparity is only used on the uppermost pyramid level,
indicated by the parameter NumLevels. Based on the matching results on that level, the disparity range for the
matching on the next lower pyramid levels is adapted automatically.

The benefits with respect to the execution time are greatest if the objects have different regions between which the
appropriate disparity range varies strongly. However, take care that the value for NumLevels is not set too large,
as otherwise the matching process may fail because of lack of texture on the uppermost pyramid level.

S
te

re
o

V
is

io
n

C-132 3D Vision With a Stereo System

The parameter ScoreThresh specifies which matching scores are acceptable. Points for which the matching
score is not acceptable are excluded from the results, i.e., the resulting disparity image has a reduced domain that
comprises only the accepted points.

Note that the value for ScoreThresh must be set according to the matching function selected via Method. The two
methods ’sad’ (0 ≤ score ≤ 255) and ’ssd’ (0 ≤ score ≤ 65025) return lower matching scores for better matches.
In contrast, the method ’ncc’ (-1 ≤ score ≤ 1) returns higher values for better matches, where a score of zero
indicates that the two matching windows are totally different and a score of minus one denotes that the second
matching window is exactly inverse to the first matching window.

The parameter Filter can be used to activate a downstream filter by which the reliability of the resulting dis-
parities is increased. Currently, it is possible to select the method ’left_right_check’, which verifies the matching
results based on a second matching in the reverse direction. Only if both matching results correspond to each other,
the resulting conjugate points are accepted. In some cases, this may lead to gaps in the disparity image, even in
well textured areas, as this verification is very strict. If you do not want to verify the matching results based on the
’left_right_check’, set the parameter Filter to ’none’.

The subpixel refinement of the disparities is switched on by setting the parameter SubDisparity to ’interpola-
tion’. It is switched off by setting the parameter to ’none’.

The results of the operator binocular_disparity are the two images Disparity and Score, which contain the
disparities and the matching score, respectively. In figure 5.14, a rectified stereo image pair is displayed, from
which the disparity and score images that are displayed in figure 5.15 were derived.

Figure 5.14: Rectified stereo images.

Both resulting images refer to the image geometry of the first rectified image, i.e., the disparity for the point (r,c)
of the first rectified image is the gray value at the position (r,c) of the disparity image. The disparity image can,
e.g., be used to extract the components of the board, which would be more difficult in the original images, i.e.,
without the use of 3D information.

In figure 5.15, areas where the matching did not succeed, i.e., undefined regions of the images, are displayed white
in the disparity image and black in the score image.

5.3.5.2 Determining Disparities Using Multigrid Stereo

For multigrid stereo, the disparities can be derived with binocular_disparity_mg. Similar to the correlation-
based approach, the two rectified images are used as input and the disparity image as well as a score image are
returned. But as the disparities are obtained by a different algorithm, the parameters that control the behavior of the
multigrid stereo matching process are completely different. In particular, the multigrid-specific control parameters
are GrayConstancy, GradientConstancy, Smoothness, InitialGuess, CalculateScore, MGParamName,
and MGParamValue. They are explained in detail in the Reference Manual entry for binocular_disparity_mg.
The significant differences between the different stereo matching approaches are listed in section 5.3.1 on page
125.

How to determine the disparities of the components on a PCB using binocular_disparity_mg with
different levels of accuracy is shown in the HDevelop example program %HALCONEXAMPLES%\hdevelop\

3D-Reconstruction\Binocular-Stereo\binocular_disparity_mg.hdev.

5.3 Binocular Stereo Vision C-133

Figure 5.15: Disparity image (left) and score image (right).

There, first the two stereo images are rectified.

read_image (ImageL, 'stereo/board/board_l_01')
read_image (ImageR, 'stereo/board/board_r_01')
gen_cam_par_area_scan_division (0.0130507774353, -665.817817207, \

1.4803417027e-5, 1.48e-5, 155.89225769, \

126.70664978, 320, 240, CamParamL)

gen_cam_par_area_scan_division (0.0131776504517, -731.860636733, \

1.47997569293e-5, 1.48e-5, 162.98210144, \

119.301040649, 320, 240, CamParamR)

create_pose (0.153573, -0.003734, 0.044735, 0.174289, 319.843388, \

359.894955, 'Rp+T', 'gba', 'point', RelPose)

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, RelPose, \

1, 'viewing_direction', 'bilinear', \

RectCamParL, RectCamParR, CamPoseRectL, \

CamPoseRectR, RectLPosRectR)

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

Then, binocular_disparity_mg is called four times, each time with a different parameter for the parameter
MGParamValue, which sets the accuracy that should be achieved. Note that an increasing accuracy also leads to
an increasing runtime.

DefaultParameters := ['fast', 'fast_accurate', 'accurate', 'very_accurate']
for I := 0 to |DefaultParameters| - 1 by 1

Parameters := DefaultParameters[I]

binocular_disparity_mg (ImageRectifiedL, ImageRectifiedR, Disparity, \

Score, 1, 10, 5, 0, 'false', \

'default_parameters', Parameters)

endfor

5.3.5.3 Determining Disparities Using Multi-Scanline Stereo

For multi-scanline stereo, the disparities can be derived with binocular_disparity_ms. Similar to the
correlation-based approach, the two rectified images are used as input and the disparity image as well as a score
image are returned. But as the disparities are obtained by a different algorithm, the parameters that control the
behavior of the multi-scanline stereo matching process are completely different. In particular, the control param-
eters specific for the multi-scanline approach are SurfaceSmoothing and EdgeSmoothing. They are explained
in detail in the Reference Manual entry for binocular_disparity_ms. The significant differences between the
different stereo matching approaches are listed in section 5.3.1 on page 125.

How to determine the disparities of the components on a PCB using binocular_disparity_ms with dif-
ferent amounts of smoothing is shown in the HDevelop example program %HALCONEXAMPLES%\hdevelop\

S
te

re
o

V
is

io
n

C-134 3D Vision With a Stereo System

3D-Reconstruction\Binocular-Stereo\binocular_disparity_ms.hdev.

There, first the two stereo images are rectified.

read_image (ImageL, 'stereo/board/board_l_01')
read_image (ImageR, 'stereo/board/board_r_01')
gen_cam_par_area_scan_division (0.0130507774353, -665.817817207, \

1.4803417027e-5, 1.48e-5, 155.89225769, \

126.70664978, 320, 240, CamParamL)

gen_cam_par_area_scan_division (0.0131776504517, -731.860636733, \

1.47997569293e-5, 1.48e-5, 162.98210144, \

119.301040649, 320, 240, CamParamR)

create_pose (0.153573, -0.003734, 0.044735, 0.174289, 319.843388, \

359.894955, 'Rp+T', 'gba', 'point', RelPose)

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, RelPose, \

1, 'viewing_direction', 'bilinear', \

RectCamParL, RectCamParR, CamPoseRectL, \

CamPoseRectR, RectLPosRectR)

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

Then, binocular_disparity_ms is called four times, each time with a different parameter settings for the pa-
rameters SurfaceSmoothing and EdgeSmoothing, which control the amount of smoothing.

SurfaceSmoothing := [0, 10, 20, 30, 40, 50, 0, 0, 0, 0, 0, 30]

EdgeSmoothing := [0, 0, 0, 0, 0, 0, 10, 20, 30, 40, 50, 20]

for I := 0 to |SurfaceSmoothing| - 1 by 1

binocular_disparity_ms (ImageRectifiedL, ImageRectifiedR, Disparity, \

Score, 20, 40, SurfaceSmoothing[I], \

EdgeSmoothing[I], [], [])

endfor

5.3.5.4 Determining Distances Using Correlation-Based Stereo

The distance of an object point from the stereo camera system is defined as its distance from the x-y-plane of
the coordinate system of the first rectified camera. For correlation-based stereo, it can be determined by the
operator binocular_distance, which is used analogously to the operator binocular_disparity described in
section 5.3.5.1 on page 130.

binocular_distance (ImageRectifiedL, ImageRectifiedR, DistanceImage, \

ScoreImageDistance, RectCamParL, RectCamParR, \

RectLPosRectR, 'ncc', MaskWidth, MaskHeight, \

TextureThresh, MinDisparity, MaxDisparity, NumLevels, \

ScoreThresh, 'left_right_check', 'interpolation')

The three additional parameters, namely the camera parameters of the rectified cameras as well as the relative pose
of the second rectified camera in relation to the first rectified camera can be taken directly from the output of the
operator gen_binocular_rectification_map.

Figure 5.16 shows the distance image and the respective score image for the rectified stereo pair of figure 5.14
on page 132. Because the distance is calculated directly from the disparities and from the camera parameters, the
distance image looks similar to the disparity image (figure 5.15). What is more, the score images are identical,
since the underlying matching process is identical.

It can be seen from figure 5.16 that the distance of the board changes continuously from left to right. The reason
is that, in general, the x-y-plane of the coordinate system of the first rectified camera will be tilted with respect to
the object surface (see figure 5.17).

If it is necessary that one reference plane of the object surface has a constant distance value of, e.g., zero, the
tilt can be compensated easily: First, at least three points that lie on the reference plane must be defined. These
points are used to determine the orientation of the (tilted) reference plane in the distance image. Therefore, they
should be selected such that they enclose the region of interest in the distance image. Then, a distance image of

5.3 Binocular Stereo Vision C-135

Figure 5.16: Distance image (left) and score image (right).

xc

y c cz

D
istance

x−y−plane of the rectified camera

Object surface

Rectified cameras

Figure 5.17: Distances of the object surface from the x-y-plane of the coordinate system of the first rectified camera.

the (tilted) reference plane can be simulated and subtracted from the distance image of the object. Finally, the
distance values themselves must be adapted by scaling them with the cosine of the angle between the tilted and the
corrected reference plane.

These calculations are carried out in the procedure tilt_correction, which is
part of the example program %HALCONEXAMPLES%\solution_guide\3d_vision\

height_above_reference_plane_from_stereo.hdev (appendix A.4 on page 233).

procedure tilt_correction (DistanceImage, RegionDefiningReferencePlane,

DistanceImageCorrected):::

In principle, this procedure can also be used to correct the disparity image, but note that you must not use the

S
te

re
o

V
is

io
n

C-136 3D Vision With a Stereo System

corrected disparity values as input to any operators that derive metric information.

If the reference plane is the ground plane of the object, an inversion of the distance image generates an image that
encodes the heights above the ground plane. Such an image is displayed on the left hand side in figure 5.18.

Objects of different height above or below the ground plane can be segmented easily using a simple threshold

with the minimal and maximal values given directly in units of the world coordinate system, e.g., meters. The
image on the right hand side of figure 5.18 shows the results of such a segmentation, which can be carried out
based on the corrected distance image or the image of the heights above the ground plane.

Figure 5.18: Left: Height above the reference plane; Right: Segmentation of high objects (white: 0-0.4 mm, light
gray: 0.4-1.5 mm, dark gray: 1.5-2.5 mm, black: 2.5-5 mm).

5.3.5.5 Determining Distances Using Multigrid Stereo

For multigrid stereo, the distance of an object point from the stereo camera system can be determined with the oper-
ator binocular_distance_mg, which is used analogously to the operator binocular_disparity_mg described
in section 5.3.5.2 on page 132, but with the three additional parameters described also for binocular_distance.
These are the camera parameters of the rectified cameras as well as the relative pose of the second rectified
camera in relation to the first rectified camera, which can be taken directly from the output of the operator
gen_binocular_rectification_map.

How to determine the depths of the components on a PCB with high accuracy is shown in
the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\Binocular-Stereo\

binocular_distance_mg.hdev.

binocular_distance_mg (ImageRectifiedL, ImageRectifiedR, Distance, Score, \

RectCamParL, RectCamParR, RectLPosRectR, 1, 10, 5, \

0, 'false', 'default_parameters', 'accurate')

5.3.5.6 Determining Distances Using Multi-Scanline Stereo

For multi-scanline stereo, the distance of an object point from the stereo camera system can be determined with
the operator binocular_distance_ms, which is used analogously to the operator binocular_disparity_ms
described in section 5.3.5.3 on page 133, but with the three additional parameters described also for
binocular_distance. These are the camera parameters of the rectified cameras as well as the relative pose
of the second rectified camera in relation to the first rectified camera, which can be taken directly from the output
of the operator gen_binocular_rectification_map.

How to determine the depths of the components on a PCB with high accuracy, especially at discontinu-
ities, is shown in the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\

Binocular-Stereo\binocular_distance_ms.hdev.

binocular_distance_ms (ImageRectifiedL, ImageRectifiedR, Distance, Score, \

RectCamParL, RectCamParR, RelPose, 20, 40, 30, 20, \

[], [])

5.3 Binocular Stereo Vision C-137

5.3.5.7 Determining Distances for Selected Points from the Disparity Image

If only the distances of selected points should be determined, the operator disparity_to_distance can be used.
It simply transforms given disparity values into the respective distance values. For example, if you want to know
the distances of two given points from the stereo camera system you can determine the respective disparities from
the disparity image and transform them into distances.

get_grayval (Disparity, RowL, ColumnL, DisparityOfSelectedPoints)

disparity_to_distance (RectCamParL, RectCamParR, RectLPosRectR, \

DisparityOfSelectedPoints, DistanceOfPoints)

This transformation is constant for the entire rectified image, i.e., all points having the same disparity have the
same distance from the x-y-plane of the coordinate system of the first rectified camera. Therefore, besides the
camera parameters of the rectified cameras, only the disparity values need to be given.

5.3.5.8 Determining 3D Coordinates from the Disparity Image

If the x, y, and z coordinates of points have to be calculated, different operators are available that derive the
corresponding information from the disparity image:

disparity_to_point_3d computes the 3D coordinates for specified image coordinates and returns them in three
tuples.

disparity_to_point_3d (RectCamParL, RectCamParR, RectLPosRectR, RowL, \

ColumnL, DisparityOfSelectedPoints, \

X_CCS_FromDisparity, Y_CCS_FromDisparity, \

Z_CCS_FromDisparity)

disparity_image_to_xyz computes 3D coordinates for the complete image and returns them in
three images (see the HDevelop example program %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\

Binocular-Stereo\disparity_image_to_xyz.hdev).

disparity_image_to_xyz (DisparityImage, X, Y, Z, RectCamParL, RectCamParR, \

RectLPosRectR)

The operators require the camera parameters of the two rectified cameras and the relative pose of the cameras.

The x, y, and z coordinates are returned in the coordinate system of the first rectified camera.

5.3.5.9 Determining 3D Coordinates for Selected Points from Point Correspondences

If only the 3D coordinates of selected points should be determined, you can alternatively use the operator
intersect_lines_of_sight to determine the x, y, and z coordinates of points from the image coordinates
of the respective conjugate points. Note that you must determine the image coordinates of the conjugate points
yourself.

intersect_lines_of_sight (RectCamParL, RectCamParR, RectLPosRectR, RowL, \

ColumnL, RowR, ColumnR, X_CCS_FromIntersect, \

Y_CCS_FromIntersect, Z_CCS_FromIntersect, \

Dist)

The x, y, and z coordinates are returned in the coordinate system of the first (rectified) camera.

The operator can also handle image coordinates of the original stereo images. Thus, the rectification can be omitted.
In this case, the camera parameters of the original stereo cameras have to be given instead of the parameters of the
rectified cameras.

It is possible to transform the x, y, and z coordinates determined by the latter two operators from the coordinate
system of the first (rectified) camera into a given world coordinate system (WCS), e.g., a coordinate system with

S
te

re
o

V
is

io
n

C-138 3D Vision With a Stereo System

respect to the building plan of a factory building. For this, a homogeneous transformation matrix, which describes
the transformation between the two coordinate systems, is needed.

This homogeneous transformation matrix can be determined in various ways. The easiest way is to take an
image of a HALCON calibration plate with the first camera only. If the 3D coordinates refer to the recti-
fied camera coordinate system, the image must be rectified as well. Then, the pose of the calibration plate
in relation to the first (rectified) camera can be determined using the operators find_calib_object and
get_calib_data_observ_points (note that before applying these operators a HALCON calibration data model
must be created and initialized).

find_calib_object (ImageRectifiedL, CalibDataID, 0, 0, 0, [], [])

get_calib_data_observ_points (CalibDataID, 0, 0, 0, RCoordL, CCoordL, \

IndexLnew, PoseL)

The resulting pose can be converted into a homogeneous transformation matrix.

pose_to_hom_mat3d (PoseL, HomMat3D_WCS_to_RectCCS)

If necessary, the transformation matrix can be modified with the operators hom_mat3d_rotate_local,
hom_mat3d_translate_local, and hom_mat3d_scale_local.

hom_mat3d_translate_local (HomMat3D_WCS_to_RectCCS, 0.01125, -0.01125, 0, \

HomMat3DTranslate)

hom_mat3d_rotate_local (HomMat3DTranslate, rad(180), 'y', \

HomMat3D_WCS_to_RectCCS)

The homogeneous transformation matrix must be inverted in order to represent the transformation from the (recti-
fied) camera coordinate system into the WCS.

hom_mat3d_invert (HomMat3D_WCS_to_RectCCS, HomMat3D_RectCCS_to_WCS)

Finally, the 3D coordinates can be transformed using the operator affine_trans_point_3d.

affine_trans_point_3d (HomMat3D_RectCCS_to_WCS, X_CCS_FromIntersect, \

Y_CCS_FromIntersect, Z_CCS_FromIntersect, X_WCS, \

Y_WCS, Z_WCS)

The homogeneous transformation matrix can also be determined from three specific points. If the origin of
the WCS, a point on its x-axis, and a third point that lies in the x-y-plane, e.g., directly on the y-axis, are
given, the transformation matrix can be determined using the procedure gen_hom_mat3d_from_three_points,
which is part of the HDevelop example program %HALCONEXAMPLES%\solution_guide\3d_vision\

3d_information_for_selected_points.hdev.

procedure gen_hom_mat3d_from_three_points (Origin, PointOnXAxis,

PointInXYPlane, HomMat3d):::

The resulting homogeneous transformation matrix can be used as input for the operator
affine_trans_point_3d, as shown above.

5.3.6 Uncalibrated Stereo Vision

Similar to uncalibrated mosaicking (see chapter 10 on page 205), HALCON also provides an “uncalibrated” ver-
sion of stereo vision, which derives information about the cameras from the scene itself by matching characteristic
points. The main advantage of this method is that you need no special calibration object. The main disadvantage
of this method is that, without a precisely known calibration object, the accuracy of the result is highly dependent
on the content of the scene, i.e., the accuracy of the result degrades if the scene does not contain enough 3D in-
formation or if the extracted characteristic points in the two images do not precisely correspond to the same world
points, e.g., due to occlusion.

5.4 Multi-View Stereo Vision C-139

In fact, HALCON provides two versions of uncalibrated stereo: Without any knowledge about the cameras and
about the scene, you can rectify the stereo images and perform a segmentation similar to the method described
in section 5.3.5.4 on page 134. For this, you first use the operator match_fundamental_matrix_ransac, which
determines the so-called fundamental matrix. This matrix models the cameras and their relation. But in contrast
to the model described in section 5.1 on page 117, internal and external parameters are not available separately.
Thus, no metric information can be derived.

The fundamental matrix is then passed on to the operator gen_binocular_proj_rectification, which is
the “uncalibrated” version of the operator gen_binocular_rectification_map. With the output of this op-
erator, i.e., the rectification maps, you can then proceed to rectify the images as described in section 5.3.4 on
page 127. Because the relative pose of the cameras is not known, you cannot generate the distance image and
segment it as described in section 5.3.5.4 on page 134. The HDevelop example program %HALCONEXAMPLES%\

hdevelop\Applications\Object-Recognition-2D\board_segmentation_uncalib.hdev shows an alter-
native approach that can be used if the reference plane appears dominant in the images, i.e., if many correspon-
dences are found on it.

Because no calibration object is needed, this method can be used to perform stereo vision with a single camera.
Note, however, that the method assumes that there are no lens distortions in the images. Therefore, the accuracy
of the results degrades if the lens has significant distortions.

If the internal parameters of the camera are known, you can determine the relative pose between the cameras
using the operator match_rel_pose_ransac and then use all the stereo methods described for the fully cali-
brated case. There is, however, a limitation: The determined pose is relative in a second sense, because it can
be determined only up to a scale factor. The reason for this is that without any knowledge about the scene, the
algorithm cannot know whether the points in the scene are further away or whether the cameras are further apart
because the effect in the image is the same in both cases. If you have additional information about the scene, you
can solve this ambiguity and determine the “real” relative pose. This method is shown in the HDevelop ex-
ample program %HALCONEXAMPLES%\hdevelop\Applications\3D-Reconstruction\Binocular-Stereo\

uncalib_stereo_boxes.hdev.

5.4 Multi-View Stereo Vision

In comparison to binocular stereo, multi-view stereo allows

• to use more than two cameras and thus to reconstruct 3D information from all around an object and

• to reconstruct surfaces and 3D coordinates of selected points in form of 3D object models.

Internally, it is based on binocular stereo. However, by default it does not return the disparity image as a result.

The following sections show

• how to initialize the stereo model (section 5.4.1) and

• how to reconstruct 3D information (section 5.4.2 on page 141).

5.4.1 Initializing the Stereo Model

The operators for multi-view stereo use a so-called stereo model to encapsulate all needed data. The following
sections show

• how to access the calibration results (section 5.4.1.1),

• how to specify the world coordinate system (section 5.4.1.2), and

• how to create the stereo model (section 5.4.1.3).

S
te

re
o

V
is

io
n

C-140 3D Vision With a Stereo System

5.4.1.1 Accessing the Calibration Results

In contrast to binocular stereo (see section 3.2.7 on page 72), for multi-view stereo you access the results of
the calibration not separately but in form of a so-called camera setup model, which contains the internal camera
parameters as well as the relative poses between the cameras. To derive the camera setup model from the calibration
data model, which must have been calibrated before with calibrate_cameras as is described in section 5.2 on
page 122, you call the operator get_calib_data as follows:

get_calib_data (CalibDataID, 'model', 'general', 'camera_setup_model', \

CameraSetupModelID)

If you want to perform the calibration in an offline step, you can save the camera setup model with the operator
write_camera_setup_model.

write_camera_setup_model (CameraSetupModelID, 'four_camera_setup_model.csm')

5.4.1.2 Specifying the Coordinate System of the Camera Setup

The coordinate system of the stereo camera setup is identical to the coordinate system of the so-called reference
camera of the setup, which is typically the camera with the index 0 (see the upper part of figure 5.19). The poses
of the other cameras and the reconstructed coordinates are computed relative to this camera.

You can change the setup’s coordinate system with the operator set_camera_setup_param in two ways. In
particular, you can

• select another camera as reference camera by setting CameraIdx to ’general’ and GenParamName to
’reference_camera’ and passing the index of the camera in GenParamValue or

• specify the pose of the desired setup coordinate system (relative to the current one) by setting CameraIdx

to ’general’ and GenParamName to ’coord_transf_pose’ and passing the pose in GenParamValue.

The latter case is shown at the bottom of figure 5.19. There, the desired coordinate system is marked by the
calibration plate (typically, you would add a rotation to let the z axis point upwards).

How to change the pose of the setup’s coordinate system is shown, e.g., in the
HDevelop example program %HALCONEXAMPLES%\hdevelop\Calibration\Multi-View\

calibrate_cameras_multiple_camera_setup.hdev. There, it is moved from the reference camera to
the calibration plate with pose 0. For that, pose 0 of the calibration plate relative to the reference camera is
accessed with get_calib_data using the parameter ’calib_obj_pose’ and, to consider the thickness of the
calibration plate, the z coordinate of the pose is modified with set_origin_pose. Then, the setup’s coordinate
system is moved into this pose with set_camera_setup_param.

RefPoseIndex := 0

get_calib_data (CalibDataID, 'calib_obj_pose', [0,RefPoseIndex], 'pose', \

PoseCam0Indx0)

set_origin_pose (PoseCam0Indx0, 0, 0, CaltabThickness, ReferencePose)

set_camera_setup_param (CameraSetupModelID, 'general', 'coord_transf_pose', \

ReferencePose)

5.4.1.3 Creating the Stereo Model

After adapting the camera setup model to your requirements, you pass it to the operator create_stereo_model,
which creates the stereo model. Note that at this point you must already specify whether you want to re-
construct points or surfaces! To reconstruct surfaces, use either the parameter ’surface_pairwise’ or
’surface_fusion’.

create_stereo_model (CameraSetupModelID, 'surface_pairwise', [], [], \

StereoModelID)

5.4 Multi-View Stereo Vision C-141

camera 1

camera 1

camera 0 (reference camera)

camera 0

xc y c z c), ,(

xc y c z c), ,(
z c2

xc2
y c2

camera 2

y c1 y c0
z c1

xc1
xc0

z c0

z c2
xc2

y c2

camera 2

y c1 y c0
z c1

xc1
xc0

z c0

xs

z s
y s

xs y s z s), ,(

Camera setup
coordinate system

default: reference camera 0

xs y s z s), ,(

y s
z s

xs

Cameras with
optical centers and

coordinate systems

Object

Cameras with
optical centers and

coordinate systems

Object

Camera setup
coordinate system

moved to calibration plate pose

Figure 5.19: Coordinate systems of a multi-view camera setup: Top: default setup coordinate system located in
the reference camera 0; bottom: setup coordinate system moved to the coordinate system of the
calibration plate.

To reconstruct points, call the operator with the parameter ’points_3d’.

create_stereo_model (CameraSetupModelID, 'points_3d', [], [], StereoModelID)

5.4.2 Reconstructing 3D Information

With multi-view stereo, you can reconstruct

• the surface of an object (section 5.4.2.1) or

• 3D coordinates for selected points (section 5.4.2.2 on page 143).

5.4.2.1 Reconstructing Surfaces

The main functionality of multi-view stereo is the reconstruction of surfaces. Two methods are avail-
able: ’surface_pairwise’ and ’surface_fusion’. The pairwise reconstruction is the faster method
and may be sufficient for many applications. For example, 3D Matching can often deal quite well with

S
te

re
o

V
is

io
n

C-142 3D Vision With a Stereo System

the results of ’surface_pairwise’. However, the fusion method has many advantages, like an im-
proved noise reduction and outlier suppression. In general, the visual results of the fusion method are
much better. Have a look at the example program %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\

Multi-View\reconstruct_surface_stereo_fusion.hdev for a comparison of both methods. Ad-
ditionally, the example programs %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\Multi-View\

reconstruct_surface_stereo_pairwise_workflow.hdev and %HALCONEXAMPLES%\hdevelop\

3D-Reconstruction\Multi-View\reconstruct_surface_stereo_fusion_workflow.hdev explain
the recommended workflow for obtaining good results with both methods.

Note that if you want to reconstruct surfaces from multiple 3D object models without any camera setup information
(e.g., sensors that return point clouds), you can use fuse_object_model_3d.

Below, we explain the main steps using the operator reconstruct_surface_stereo with the method
’surface_pairwise’. The code fragments belong to the HDevelop example program %HALCONEXAMPLES%\

hdevelop\Applications\Robot-Vision\locate_pipe_joints_stereo.hdev, which reconstructs pipe
joints. For the reconstruction, four cameras are used. Afterwards, surface-based 3D matching is performed to
estimate the pose of the individual pipe joints, see Solution Guide I, section 11.3.2 on page 108). Figure 5.1 on
page 117 shows the four camera images and the reconstructed surface.

After creating and initializing the stereo model, you must call the operator set_stereo_model_image_pairs to
specify which cameras form pairs, i.e., between which camera images the disparity images are to be computed.
In the example, the cameras 0 and 1 and the cameras 2 and 3, respectively, form pairs. Before that, we set some
parameters that specify the interpolation mode and sub-sampling factor for the rectification maps.

set_stereo_model_param (StereoModelID, 'rectif_interpolation', 'bilinear')
set_stereo_model_param (StereoModelID, 'rectif_sub_sampling', 1.2)

set_stereo_model_image_pairs (StereoModelID, [0, 2], [1, 3])

Furthermore, the surface reconstruction must be restricted to a specific part of the 3D space, which is realized by
the definition of a bounding box. This box is built by the coordinates of its front lower left corner and its back
upper right corner. In the program, a camera setup model is used for which the coordinate system was moved to
the object, or more precisely, to a calibration plate that was used for the calibration of the scene in which the object
was placed. Relative to this calibration plate, the coordinates are specified in meters.

set_stereo_model_param (StereoModelID, 'bounding_box', [-0.2, -0.07, -0.075, \

0.2, 0.07, -0.004])

Before calling the reconstruction operator, the model can be configured for the stereo reconstruction using
set_stereo_model_param. With this operator, several parameters are adjusted that control the reconstruction.
For example, as the multi-view surface reconstruction is based on computing binocular disparity images (see
section 5.3.5.1 on page 130), several parameters are used to configure the binocular image rectification and the
internally called binocular stereo operators.

* -> Subsampling X, Y, Z

set_stereo_model_param (StereoModelID, 'sub_sampling_step', 3)

* -> Binocular disparity parameters.

set_stereo_model_param (StereoModelID, 'binocular_filter', \

'left_right_check')

Then, the actual surface reconstruction is applied with the operator reconstruct_surface_stereo.

reconstruct_surface_stereo (Images, StereoModelID, PipeJointPileOM3DID)

If the reconstruction fails, please refer to the Reference Manual entry of reconstruct_surface_stereo, which
contains detailed information about troubleshooting.

The reconstructed surface is returned as a 3D object model (see page 38), which by default consists of points and
their normals. If you need a surface that contains meshing information, e.g., because you want to apply a 3D
primitives fitting (see section 4.5 on page 111) to the 3D object model, you have to additionally set the parameter
’point_meshing’ within set_stereo_model_param before building the camera pairs for the reconstruction.

5.4 Multi-View Stereo Vision C-143

In the example, the 3D object model is visualized by the procedure visualize_object_model_3d, which allows
to interactively rotate, move, and zoom into the model.

create_pose (0.0, 0.0, 0.5, -30, 0, 180, 'Rp+T', 'gba', 'point', PoseIn)

if (Index == 1)

visualize_object_model_3d (WindowHandle1, PipeJointPileOM3DID, \

CamParam0, PoseIn, ['color', \

'point_size'], ['yellow', 1], \

'Reconstructed scene in ' + ReconsTime$'.3' + ' s', \

[], Instructions, PoseOut)

endif

5.4.2.2 Reconstructing 3D Points

Multi-view stereo also allows to reconstruct the 3D coordinates of selected points. The main advantages of using
the multi-view approach in comparison to the binocular variant (see, section 5.3.5.9 on page 137) are that the
reconstruction is more accurate when more than two lines of sight can be taken into account and that points located
on different sides of an object can be reconstructed.

After creating and initializing the stereo model, you can directly use multi-view stereo to reconstruct the 3D
coordinates from point correspondences. This is shown in the HDevelop example program %HALCONEXAMPLES%\

hdevelop\3D-Reconstruction\Multi-View\reconstruct_points_stereo.hdev, where four cameras are
used to reconstruct the coordinates of the calibration marks of a calibration plate in three different poses (see
figure 5.20).

pose 0 pose 1 pose 2

Figure 5.20: Top: images of four cameras of the calibration plate with extracted marks in three different poses;
Bottom: reconstructed points.

The main input for the reconstruction operator reconstruct_points_stereo are the corresponding points from
the multi-view images. They must be passed as tuples in the parameters

• Row (row coordinate of the point),

• Column (column coordinate of the point),

• CameraIdx (index of the camera), and

S
te

re
o

V
is

io
n

C-144 3D Vision With a Stereo System

• PointIdx (index of the point).

Generally, you must extract the corresponding points by yourself. In the example, this task is easy, because here the
points correspond to the marks of a calibration plate, which can be easily extracted using an initialized calibration
data model and the operators find_calib_object and get_calib_data_observ_points. For other objects
than the HALCON calibration plate, the extraction may be a bit more challenging.

In the example, the extraction is realized as follows: First, caltab_points is used to derive the number
of calibration marks from the description of the used calibration plate. As with find_calib_object and
get_calib_data_observ_points the calibration marks are always extracted in the same order, the tuple with the
point indices of the correspondence information for a single image can be created using tuple_gen_sequence.
As the parameter CameraIdx must be a tuple of the same length as Row, Column, and PointIdx, a tuple with
the same length for which each element is ’1’ is created, which is used later to assign the correct correspondence
values to the camera indices.

caltab_points (CaltabDescr, X, Y, Z)

tuple_gen_sequence (0, |X| - 1, 1, Indices)

Ones := gen_tuple_const(|X|,1)

Now, a calibration data model is created and prepared for the extraction of the calibration marks. Then, for
each pose of the calibration plate, empty tuples for the correspondence information are created and filled with
the values obtained for each camera that images the calibration plate under this pose. In particular, for each
camera, the calibration marks are extracted with find_calib_object and get_calib_data_observ_points.
The resulting row and column coordinates are added to the tuples AllRow and AllColumn. The tuple with the
point indices is added to the tuple AllIndices and the corresponding elements with the specific camera index are
added to the tuple AllCams.

Objects3D := []

create_calib_data ('calibration_object', 4, 1, CalibDataID)

set_calib_data_calib_object (CalibDataID, 0, CaltabDescr)

for PoseIndex := 0 to 2 by 1

AllRow := []

AllColumn := []

AllIndices := []

AllCams := []

for CameraIndex := 0 to 3 by 1

get_camera_setup_param (CameraSetupModelID, CameraIndex, 'params', \

CameraParam)

ImageFile := ImgPath + 'multi_view_calib_cam_' + CameraIndex + '_' \

+ (13 + PoseIndex)$'02'
read_image (Image, ImageFile)

set_calib_data_cam_param (CalibDataID, CameraIndex, [], CameraParam)

find_calib_object (Image, CalibDataID, CameraIndex, 0, 0, [], [])

get_calib_data_observ_points (CalibDataID, CameraIndex, 0, 0, Row, \

Column, Index, Pose)

AllRow := [AllRow,Row]

AllColumn := [AllColumn,Column]

AllIndices := [AllIndices,Indices]

AllCams := [AllCams,CameraIndex * Ones]

endfor

After accumulating the correspondence information for all cameras that image the calibration plate under the
specific pose, the reconstruction is applied with reconstruct_points_stereo.

reconstruct_points_stereo (StereoModelID, AllRow, AllColumn, [], \

AllCams, AllIndices, X, Y, Z, CovWP, \

PointIndexOut)

It returns tuples with the x, y, and z coordinates and with the index of those points that could be reconstructed,
i.e., which were extracted in two or more images. In the example, the coordinates are transformed via x, y, and z
images into a 3D object model and the models of all three calibration plate poses are interactively visualized with
visualize_object_model_3d, which allows to rotate, move, and zoom into the model.

5.4 Multi-View Stereo Vision C-145

gen_image_const (ImageX, 'real', 1, |X|)

gen_image_const (ImageY, 'real', 1, |X|)

gen_image_const (ImageZ, 'real', 1, |X|)

...

set_grayval (ImageX, Indices, 0 * Indices, X)

set_grayval (ImageY, Indices, 0 * Indices, Y)

set_grayval (ImageZ, Indices, 0 * Indices, Z)

xyz_to_object_model_3d (ImageX, ImageY, ImageZ, ObjectModel3DID)

Objects3D := [Objects3D,ObjectModel3DID]

disp_continue_message (WindowHandles[3], 'black', 'true')
stop ()

endfor

visualize_object_model_3d (WindowHandle, Objects3D, CameraParam, [], \

'color_attrib', 'coord_z', [], [], Instructions, \

PoseOut)

Please note that the example shows only the main functionality of the stereo point reconstruction. For more
information, e.g., about input and output covariances or the influence of the bounding box of the stereo model,
please refer to the Reference Manual entry of reconstruct_points_stereo.

S
te

re
o

V
is

io
n

C-146 3D Vision With a Stereo System

Laser Triangulation with Sheet of Light C-147

Chapter 6

Laser Triangulation with Sheet of
Light

Laser triangulation can be used to reconstruct the surface of a 3D object by approximating it via a set of height pro-
files. HALCON provides operators for a special type of laser triangulation that is called sheet-of-light technique.

6.1 The Principle of Sheet of Light

The basic idea of the sheet-of-light technique is to project a thin luminous straight line, e.g., generated by a laser
line projector, onto the surface of the object that is to be reconstructed and then image the projected line with a
camera. As shown in figure 6.1 the projection of the laser line builds a plane that is called light plane or sheet of
light. The optical axis of the camera and the light plane form an angle α, which is called angle of triangulation. The
points of intersection between the laser line and the camera view depend on the height of the object. Thus, if the
object onto which the laser line is projected differs in height, the line is not imaged as a straight line but represents
a profile of the object. Using this profile, we can obtain the height differences of the object. To reconstruct the
whole surface of an object, i.e., to get many height profiles, the object must be moved relative to the measurement
system, i.e., the unit built by the laser line projector and the camera.

The sheet-of-light technique can be applied either to a calibrated measurement setup or to the uncalibrated setup.
If the setup is calibrated, the measurement returns the disparities, the x, y, and z coordinates of the points that build
the profiles in the world coordinate system (WCS, see figure 6.1), and a 3D object model that is derived from the x,
y, and z coordinates. The disparities are returned in form of a disparity image, i.e., the disparities of each measured
profile are stored in one row of the disparity image (see figure 6.2 and note that the camera must be oriented such
that the profiles are roughly parallel to the rows of the image). The x, y, and z coordinates are also not explicitly
returned as values but are expressed as values of pixels within images. That is, three images are returned, one
for the x coordinates (X), one for the y coordinates (Y), and one for the z coordinates (Z). The 3D object model
contains information about the 3D coordinates and the corresponding 2D mapping. If the setup is uncalibrated,
only the disparity image and a score that describes how reliable the measurement result is can be returned by the
measurement.

Note that the disparity image for sheet of light has not exactly the same meaning as the disparity image described
for stereo matching in section 5.1 on page 117 and section 5.3.5.1 on page 130. For stereo, the disparity describes
the difference between the row coordinates of the left and right stereo images, whereas for sheet of light, the
disparity is built by the subpixel row values at which the profile was detected.

6.2 The Measurement Setup

The hardware needed for a sheet-of-light measurement consists of a projector that is able to project a thin luminous
line, a camera, a positioning system, and the object to measure. In the following, we assume the projector to be
a laser line projector and the positioning system to be linear (e.g., a conveyor belt), as these are very common in
laser triangulation applications.

S
he

et
of

Li
gh

t

C-148 Laser Triangulation with Sheet of Light

Angle of triangulation

Camera coordinate system
c

z
c

yx
c

Light plane pose x y zl l l

Image coordinate system r
World coordinate system zx yw ww

(row) c (column)

α

α α

Laser line projector Laser line projector

Object
P

zw

yw

xw

Scanning direction

xl

zl

yl

P

zw

yw

xw

l

l
x

y

lz

Object

Camera

y c

zc

P’y c

zc

P’

Camera

x cxc

c

r

c

r

Im
ag

e

Im
ag

e

Figure 6.1: Basic principle of sheet of light (light plane marked in gray).

Disparity image

...

Row 511 (profile of image 511)

Row 2 (profile of image 3)
Row 1 (profile of image 1)
Row 0 (profile of image 0)

Image 0
Image 1

Image 2

...
Image 511

Figure 6.2: Disparity image: the disparity obtained from each profile (or image, respectively) is stored in a row of
the disparity image.

The relation between the projector, the camera, and the linear positioning system must not be changed, whereas
the position of the object that is transported by the positioning system changes in relation to the projector-camera
unit. Since the profile images are processed column by column, the profiles must be oriented roughly horizontal,
i.e., roughly parallel to the rows of the image.

The relation between the laser line projector, the camera, and the object to measure can be described by different
measurement setups. Figure 6.3 shows the three apparent configurations for the three components. In the first case,
the camera view is orthogonal to the object and the light plane is tilted. The second case shows a tilted camera
view and an orthogonal light plane. For the third case, both the camera view and the laser line are tilted.

Figure 6.4 exemplarily shows a measurement setup as it is used for the examples that will be discussed in the
following sections.

Which measurement configuration to use depends on the goal of the measurement and the geometry of the object.
The configuration in figure 6.3 (a), e.g., is especially suitable if an orthogonal projection of the object in the image
is needed for any reason. Then, a cuboid is imaged as a rectangle. For all configurations in which the camera is

6.3 Calibrating the Sheet-of-Light Setup C-149

a) b) c)

P

Laser line
projector

P

Laser line
projector

P

Laser line
projector

Object

Camera

Object

Camera

Object

Camera

Figure 6.3: Basic configurations possible for a sheet-of-light measurement setup.

Figure 6.4: Exemplary setup for a sheet-of-light measurement consisting of a camera, a laser line projector, and a
positioning system.

not placed orthogonal, it would be imaged as a trapezoid because of the perspective deformations (see figure 6.5
on page 150).

The most important criterion for the selection of the measurement setup is the geometry of the object. The setup
should be selected such that the amount of shadowing effects and occlusions is minimized. Occlusions occur if
an object point is illuminated by the laser line but is not visible in the image, because other parts of the object lie
between the line of sight of the camera and the object point (see figure 6.6, top). Shadowing effects occur if an
object point is visible in the image but is not illuminated by the laser line, because other parts of the object lie
between the laser projection and the imaged object point (see figure 6.6, bottom).

For all three setup configurations, the angle of triangulation, i.e., the angle between the light plane and the optical
axis of the camera, should be in a range of 30° to 60° to get a good measurement accuracy. If the angle is smaller,
the accuracy decreases. If the angle is larger, the accuracy increases, but more problems because of occlusions and
shadowing effects are to be expected. Thus, you have to find a trade-off between the accuracy and the completeness
of the measurement.

Additionally, the accuracy decreases if the light plane is out of focus of the camera. That may happen, if the angle
of triangulation is too small, i.e., the angle between the light plane and the focus plane is too large, and therefore
only a small part near the intersection of both planes is in focus. To overcome this problem, a tilt lens can be used
to align the focus plane with the light plane using the Scheimpflug principle (see section 2.2.3 and section 5.1.3
for details).

6.3 Calibrating the Sheet-of-Light Setup

A sheet-of-light setup can be calibrated in two different ways:

S
he

et
of

Li
gh

t

C-150 Laser Triangulation with Sheet of Light

Laser line
projector

Laser line
projector

ObjectObject

Camera

Camera

Figure 6.5: With the camera being orthogonal to the object, an orthogonal projection of the object is possible: (left)
orthogonal camera view, (right) perspective view.

Object point is visible in the
image but is not illuminated

P

Laser line
projector

P

Object point is illuminated
but occluded in the image

Laser line
projector

Object point is illuminated
and visible in the image

Occluded
area

P

Object point is illuminated
and visible in the image

P Shadowed
area

Laser line
projector

Laser line
projector

Occlusion

Shadowing effect

Camera

Object

ObjectObject

Camera

Object

Camera Camera

Figure 6.6: Problems that have to be considered before selecting the measurement setup: (top) occlusions and
(bottom) shadowing effects.

Calibration using a standard HALCON calibration plate

To calibrate a sheet-of-light setup using a standard HALCON calibration plate (see section 6.3.1), first the
camera is calibrated conventionally. Then, the pose of the light plane and the movement of the objects to be
measured must be determined based on additional images of the calibration plate.

Calibration using a special 3D calibration object

6.3 Calibrating the Sheet-of-Light Setup C-151

For the calibration of a sheet-of-light setup with a special 3D calibration object (see section 6.3.2), first the
3D calibration object must be provided. The calibration itself requires only one (uncalibrated) reconstruction
of the 3D calibration object, i.e., its disparity image.

6.3.1 Calibrating the Sheet-of-Light Setup using a standard HALCON calibra-
tion plate

This section describes how to calibrate the sheet-of-light measurement setup. If the uncalibrated case is sufficient
for your application, you can skip this section and proceed with section 6.4 on page 157.

The calibration of the sheet-of-light setup is applied to get the internal and external camera parameters, the orienta-
tion of the light plane in the WCS, and the relative movement of the object between two successive measurements.
The calibration consists of the following steps:

1. Calibrate the camera.

2. Determine the orientation of the light plane with respect to the WCS.

3. Calibrate the movement of the object relative to the measurement setup.

The camera is calibrated by a standard camera calibration as described in section 3.2 on page 61. As result,
the camera calibration returns the internal camera parameters and the pose of the WCS relative to the camera
coordinate system (external camera parameters).

To determine the light plane and its pose, we need at least three corresponding points (see figure 6.7), in particular
two points in the plane of the WCS with ’z=0’ (P1, P2) and one point that differs significantly in z direction (P3).
Thus, you place the calibration object, e.g., the standard HALCON calibration plate, once or twice so that it lies
in the plane of the WCS with ’z=0’, and once so that a higher position can be viewed, i.e., the plate is either
translated in z direction or it is placed in a tilted position. For each position of the calibration plate, you take two
images, one showing the calibration plate and one showing the laser line. Note that you have to adapt the lighting
in between to get one image with a clearly represented calibration plate and one image that shows a well-defined
laser line. The translated or tilted position of the calibration plate should be selected so that the plane that is built
by the points P1, P2, and P3 becomes as large as possible. The height difference should be at least as big as the
height differences expected for the objects to measure.

Laser line projector

y

x
P2

P3

P1

Camera

z

x

z

y

x

y

w

w

l

l

l

c

c

w

z c

Laser line projector

P2

P1

z

y

x

y

x

z w

l

l

l

c

c

Camera

z c

w

w

x
y

P3

Figure 6.7: Position of the third point (P3) obtained by (left) tilted calibration plate or (right) translated calibration
plate.

S
he

et
of

Li
gh

t

C-152 Laser Triangulation with Sheet of Light

Note that the laser line has to be projected onto the same plane in which the calibration plate is placed. But if
possible, it should not be directly projected onto the calibration plate but only near to it. This is because the used
standard HALCON calibration plate is made of a ceramic that shows a strong volume scattering. This leads to a
broadened profile (see figure 6.8), which results in a poor accuracy. If you use a calibration object that consists of
a material with different reflection properties, this might be no problem.

Figure 6.8: The white parts of the used HALCON calibration plate show a very broad laser line because of volume
scattering.

Note further that the three corresponding points described above represent the minimum number of points needed
to obtain a plane. To enhance the precision of the calibration, redundancy is needed; thus, we recommended to
measure more than three corresponding points. Then, the light plane is approximated by fitting a plane into the
obtained point cloud.

In the final step, the pose describing the movement of the object must be calibrated using two images containing a
calibration plate that was moved by the positioning system by a known number of movement steps.

Summarized, we have to acquire:

• a set of images for the camera calibration,

• at least two images that clearly show the laser line in different planes and which correspond to images that
were used for the calibration, and

• at least two images that show the calibration plate in the plane of the linear positioning system. Between the
acquisition of the first and the second image, the calibration plate must be moved by the positioning system
by a known number of movement steps.

The HDevelop example program
%HALCONEXAMPLES%\hdevelop\Applications\Measuring-3D\calibrate_sheet_of_light_calplate.hdev

shows in detail how to calibrate a sheet-of-light measurement setup with a standard HALCON calibration plate.

For the first step, i.e., the camera calibration, initial values for the internal camera parameters and for the thickness
of the calibration plate are set.

gen_cam_par_area_scan_polynomial (0.0125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000006, \

0.000006, 376.0, 120.0, 752, 240, \

StartParameters)

CalTabDescription := 'caltab_30mm.descr'
* Note that the thickness of the calibration target used for this example \

* is 0.63 mm.

* If you adapt this example program to your application, it is necessary \

* to determine

* the thickness of your specific calibration target and to use this value \

* instead.

CalTabThickness := .00063

Then, the calibration images are read. These should fulfill the requirements that are described for a camera cal-
ibration in the section “How to take a set of suitable images?” in the chapter reference “Calibration”. Now, for

6.3 Calibrating the Sheet-of-Light Setup C-153

each image, the calibration plates are searched, the contours and centers of their marks are extracted, and the pose
of the calibration plate is estimated. The obtained information is stored in the calibration data model.

NumCalibImages := 20

for Index := 1 to NumCalibImages by 1

read_image (Image, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
find_calib_object (Image, CalibDataID, 0, 0, Index, [], [])

endfor

With the obtained data, the actual camera calibration is performed, so that the internal camera parameters
(CameraParameters) and the external camera parameters (camera poses) for all calibration images can be ob-
tained. The internal camera parameters and the camera pose for one of the calibration images are the first two
variables that we need for the sheet-of-light measurement that is described in the next section.

calibrate_cameras (CalibDataID, Errors)

get_calib_data (CalibDataID, 'camera', 0, 'params', CameraParameters)

Note that by selecting the camera pose of one of the calibration images you define the origin of the WCS used for
the measurement.

For the second step, i.e., the orientation of the light plane in relation to the WCS, the poses of two of the calibration
images are needed. The images show the calibration plates in different heights. The pose of one image is used to
define the WCS and the pose of the other image is used to define a temporary coordinate system (TCS). For both
images, the origins of the poses are shifted with set_origin_pose to consider the thickness of the calibration
plate.

Index := 19

get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', \

CalTabPose)

set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, CameraPose)

Index := 20

get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', \

CalTabPose)

set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, TmpCameraPose)

For each of the two calibration images a corresponding laser line image was acquired. There, the laser line
is clearly projected onto the same plane that contained the calibration plate in the calibration image. With
the two laser line images and the poses obtained from the two corresponding calibration images the procedure
compute_3d_coordinates_of_light_line calculates the 3D coordinates of the points that build the laser lines.
The obtained point cloud consists of the points of the light plane in the plane of the WCS with ’z=0’ (see P1 and
P2 in figure 6.7 on page 151) and the points of the light plane in the plane of the TCS with ’z=0’ (see P3 in
figure 6.7 on page 151).

read_image (ProfileImage1, \

'sheet_of_light/connection_rod_lightline_019.png')
compute_3d_coordinates_of_light_line (ProfileImage1, MinThreshold, \

CameraParameters, [], CameraPose, \

X19, Y19, Z19)

read_image (ProfileImage2, \

'sheet_of_light/connection_rod_lightline_020.png')
compute_3d_coordinates_of_light_line (ProfileImage2, MinThreshold, \

CameraParameters, TmpCameraPose, \

CameraPose, X20, Y20, Z20)

Now, the procedure fit_3d_plane_xyz fits a plane into the point cloud. This plane is the light plane, for which the
pose is needed as the third variable for the calibrated sheet-of-light measurement. This pose (LightPlanePose)
is calculated from the plane using the procedure get_light_plane_pose.

procedure fit_3d_plane_xyz (X, Y, Z, Ox, Oy, Oz, Nx, Ny, Nz, MeanResidual)

get_light_plane_pose (Ox, Oy, Oz, Nx, Ny, Nz, LightPlanePose)

S
he

et
of

Li
gh

t

C-154 Laser Triangulation with Sheet of Light

In the third step, i.e., the calibration of the movement of the object in relation to the measurement setup, the
calibration plate is moved in discrete steps by the linear positioning system that will be used also for the following
measurement. To calibrate the movement of the linear positioning system, two images with different movement
states are needed. To enhance the accuracy, we do not use images of two succeeding movement steps but use
images with a known number of movement steps between them. Here, the number of movement steps between
both images is 19.

read_image (CaltabImagePos1, 'sheet_of_light/caltab_at_position_1.png')
read_image (CaltabImagePos20, 'sheet_of_light/caltab_at_position_2.png')
StepNumber := 19

Now, for both images the poses of the calibration plates are derived.

find_calib_object (CaltabImagePos1, CalibDataID, 0, 0, NumCalibImages + 1, \

[], [])

get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 1, Row1, \

Column1, Index1, CameraPosePos1)

find_calib_object (CaltabImagePos20, CalibDataID, 0, 0, NumCalibImages + 2, \

[], [])

get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 2, Row1, \

Column1, Index1, CameraPosePos20)

Then, the pose that describes the transformation between these two poses, i.e., the transformation needed for 19
movement steps, is calculated (MovementPoseNSteps). Note that a rotation is not assumed and therefore all
rotational elements are set to 0.

pose_to_hom_mat3d (CameraPosePos1, HomMat3DPos1ToCamera)

pose_to_hom_mat3d (CameraPosePos20, HomMat3DPos20ToCamera)

pose_to_hom_mat3d (CameraPose, HomMat3DWorldToCamera)

hom_mat3d_invert (HomMat3DWorldToCamera, HomMat3DCameraToWorld)

hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos1ToCamera, \

HomMat3DPos1ToWorld)

hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos20ToCamera, \

HomMat3DPos20ToWorld)

affine_trans_point_3d (HomMat3DPos1ToWorld, 0, 0, 0, StartX, StartY, StartZ)

affine_trans_point_3d (HomMat3DPos20ToWorld, 0, 0, 0, EndX, EndY, EndZ)

create_pose (EndX - StartX, EndY - StartY, EndZ - StartZ, 0, 0, 0, 'Rp+T', \

'gba', 'point', MovementPoseNSteps)

To get the pose for a single movement step (MovementPose), the elements of MovementPoseNSteps that describe
a translation are divided by the number of steps. MovementPose, together with the internal and external camera
parameters and the pose of the light plane can now be used to apply a calibrated sheet-of-light measurement.

MovementPose := MovementPoseNSteps / StepNumber

For details about the proceedings inside the stated procedures, we refer to the example.

6.3.2 Calibrating the Sheet-of-Light Setup Using a Special 3D Calibration Object

Figure 6.9 shows a sheet-of-light setup together with a special 3D calibration object. To calibrate the sheet-of-light
setup, one disparity image of the 3D calibration object is acquired with the sheet-of-light setup. The sheet-of-light
setup is then calibrated using this disparity image with the operator calibrate_sheet_of_light.

The calibration of a sheet-of-light setup with a 3D calibration object is simpler but slightly less accurate than the
calibration of a sheet-of-light setup with a standard HALCON calibration plate, which is described in section 6.3.1
on page 151. Nevertheless, first a suitable 3D calibration object must be provided.

In the following, the steps that are necessary for the calibration are described. The HDe-
velop example program %HALCONEXAMPLES%\hdevelop\3D-Reconstruction\Sheet-Of-Light\

calibrate_sheet_of_light_3d_calib_object.hdev shows in detail how to calibrate a sheet-of-light
setup with a special 3D calibration object.

6.3 Calibrating the Sheet-of-Light Setup C-155

Laser line projector

x

z

y

x

y

z

Camera

3D calibration object

l

l

l c

c

c

y

z x
w

w w

Figure 6.9: Sheet-of-light setup with 3D calibration object.

Supply of a 3D Calibration Object

A special 3D calibration object must be provided. This calibration object must correspond to the CAD model
created with create_sheet_of_light_calib_object. The 3D calibration object has an inclined plane on
which a truncated pyramid is located. It has a thinner side, which is hereinafter referred to as front side. The
thicker side is referred to as back side of the calibration object. Figure 6.10 shows the 3D calibration object.

Figure 6.10: 3D calibration object.

The dimensions of the calibration object should be chosen such that the calibration object covers the complete
measuring volume. Be aware, that only parts on the 3d calibration object above the minimum height of the tilted
plane (see the parameter HeightMin of the operator create_sheet_of_light_calib_object) are taken into
account.

The CAD model, which is written as a DXF file by create_sheet_of_light_calib_object, also serves as de-
scription file of the calibration object. This CAD model can then be used to manufacture the individual calibration

S
he

et
of

Li
gh

t

C-156 Laser Triangulation with Sheet of Light

object. Note that MVTec does not offer such 3D calibration objects. More information on how to manufacture a
calibration object is provided by the description of create_sheet_of_light_calib_object.

Preparation of the Sheet-Of-Light Model

To prepare a sheet-of-light model for the calibration, the following steps must be performed.

1. Create a sheet-of-light model with create_sheet_of_light_model.

2. Set the initial parameters of the camera with set_sheet_of_light_param. So far, only pinhole cameras
with the division model are supported.

3. Set the description file of the calibration object (created with create_sheet_of_light_calib_object)
with set_sheet_of_light_param.

create_sheet_of_light_model (Domain, [], [], SheetOfLightModelID)

set_sheet_of_light_param (SheetOfLightModelID, 'camera_parameter', \

CameraParam)

set_sheet_of_light_param (SheetOfLightModelID, 'calibration_object', \

'calib_object.dxf')

Uncalibrated Reconstruction of the 3D Calibration Object

The 3D calibration object must be reconstructed with the (uncalibrated) sheet-of-light model prepared above, i.e.,
a disparity image of the 3D calibration object must be created (see figure 6.11).

for Index := 1 to 1000 by 1

measure_profile_sheet_of_light (ProfileImage, SheetOfLightModelID, [])

endfor

Figure 6.11: Disparity image of the 3D calibration object.

For this, the calibration object must be oriented such that either its front side or its back side intersect the light
plane first (i.e., the movement vector should be parallel to the Y axis of the calibration object, see figure 6.9 on
page 155 or create_sheet_of_light_calib_object). As far as possible, the domain of the disparity image
of the calibration object should be restricted to the calibration object. Besides, the domain of the disparity image
should have no holes on the truncated pyramid. All four sides of the truncated pyramid must be clearly visible.

6.4 Performing the Measurement C-157

If the disparity image is already provided by the camera, it can be set with set_sheet_of_light_param directly.

set_profile_sheet_of_light (CalibObjectDisparity, SheetOfLightModelID, [])

Calibration of the Sheet-Of-Light Setup

The calibration is then performed with calibrate_sheet_of_light.

calibrate_sheet_of_light (SheetOfLightModelID, Error)

The returned error is the RMS of the distance of the reconstructed points to the calibration object in meters.

For sheet-of-light models calibrated with calibrate_sheet_of_light, you can obtain the calibrated camera
parameters, camera pose, light plane pose, and movement pose using get_sheet_of_light_param.

6.4 Performing the Measurement

A sheet-of-light measurement is applied to get height information for the object to measure. This height infor-
mation is presented by a disparity image in which each row contains the disparities of one measured profile of
the object (see figure 6.2 on page 148), by the images X, Y, and Z that express the x, y, and z coordinates of the
measured profiles as values of pixels within images, or by a 3D object model that contains the coordinates of the
object’s 3D points and the corresponding 2D mapping. The images X, Y, and Z as well as the 3D object model
can be obtained only for a calibrated measurement setup, whereas the disparity image can be obtained also for the
uncalibrated case. A sheet-of-light measurement consists of the following basic steps:

1. Calibrate the measurement setup (if a calibrated measurement is needed) as described in the previous section.

2. Create a sheet-of-light model with create_sheet_of_light_model and set additional parameters with
successive calls to set_sheet_of_light_param.

3. Acquire images for each profile to measure, e.g., using grab_image_async.

4. Measure the profile of each image with measure_profile_sheet_of_light.

5. Get the results of the measurement with successive calls to get_sheet_of_light_result or, if a 3D
object model is required, with a single call to get_sheet_of_light_result_object_model_3d.

6. If only the uncalibrated case was applied and a disparity image was obtained, but the x, y, and z coor-
dinates or the 3D object model are still needed, you can subsequently apply a calibration. Then, you
have to calibrate the measurement setup like described in the previous section and add the obtained
camera parameters to the model with set_sheet_of_light_param. Afterwards you call the operator
apply_sheet_of_light_calibration with the disparity image and the adapted sheet-of-light model.
The resulting images that contain the coordinates X, Y, and Z or the 3D object model are queried from
the model with get_sheet_of_light_result or get_sheet_of_light_result_object_model_3d,
respectively. How to subsequently apply a sheet-of-light calibration to a disparity image is shown
in the HDevelop example program %HALCONEXAMPLES%\hdevelop\Applications\Measuring-3D\

calibrate_sheet_of_light_calplate.hdev.

Optionally, you can query all parameters that you have already set for a specific model or that were set by default
using get_sheet_of_light_param. To query all parameters that can be set for a sheet-of-light model you call
query_sheet_of_light_params.

6.4.1 Calibrated Sheet-of-Light Measurement

How to apply a calibrated sheet-of-light measurement is shown in the HDe-
velop example program %HALCONEXAMPLES%\hdevelop\Applications\Measuring-3D\

reconstruct_connection_rod_calib.hdev, which measures the object shown in figure 6.12.

S
he

et
of

Li
gh

t

C-158 Laser Triangulation with Sheet of Light

Figure 6.12: Object to measure.

The first step is to assign the information obtained by the calibration of the sheet-of-light measurement setup (see
previous section) to a set of variables.

gen_cam_par_area_scan_polynomial (0.0126514, 640.275, -2.07143e+007, \

3.18867e+011, -0.0895689, 0.0231197, \

6.00051e-006, 6e-006, 387.036, 120.112, \

752, 240, CamParam)

create_pose (-0.00164029, 1.91372e-006, 0.300135, 0.575347, 0.587877, \

180.026, 'Rp+T', 'gba', 'point', CamPose)

create_pose (0.00270989, -0.00548841, 0.00843714, 66.9928, 359.72, 0.659384, \

'Rp+T', 'gba', 'point', LightplanePose)

create_pose (7.86235e-008, 0.000120112, 1.9745e-006, 0, 0, 0, 'Rp+T', 'gba', \

'point', MovementPose)

Then, a sheet-of-light model is created for a rectangular region of interest using
create_sheet_of_light_model. The ROI should be selected as large as necessary but as small as pos-
sible. That is, it should approximately be some pixels larger than the width of the object in width and the maximal
expected displacement of the laser line caused by the height of the object, i.e., the largest expected disparity, in
height.

Now, some parameters are set with set_sheet_of_light_param. As a calibrated measurement is applied, the
parameter ’calibration’ is set to ’xyz’. For an uncalibrated measurement, it would be ’none’, which is the
default. Further, the variables with the calibration information are passed as values to the corresponding parameters
for the internal camera parameters (’camera_parameter’), the external camera parameters (’camera_pose’),
the pose of the light plane (’lightplane_pose’), and the movement of the object relative to the measurement
setup (’movement_pose’).

gen_rectangle1 (ProfileRegion, 120, 75, 195, 710)

create_sheet_of_light_model (ProfileRegion, ['min_gray', 'num_profiles', \

'ambiguity_solving'], [70, 290, 'first'], \

SheetOfLightModelID)

set_sheet_of_light_param (SheetOfLightModelID, 'calibration', 'xyz')
set_sheet_of_light_param (SheetOfLightModelID, 'scale', 'mm')
set_sheet_of_light_param (SheetOfLightModelID, 'camera_parameter', CamParam)

set_sheet_of_light_param (SheetOfLightModelID, 'camera_pose', CamPose)

set_sheet_of_light_param (SheetOfLightModelID, 'lightplane_pose', \

LightplanePose)

set_sheet_of_light_param (SheetOfLightModelID, 'movement_pose', \

MovementPose)

Then, for each profile to measure an image is acquired (see, e.g., figure 6.13) to apply the actual measurement.
Here, the images for each movement step are read from file with read_image. In practice, you will most probably
grab the images directly from your image acquisition device using grab_image_async (see Solution Guide II-
A for details about image acquisition). For each image, the profile within the rectangular region of interest is

6.4 Performing the Measurement C-159

measured with measure_profile_sheet_of_light, i.e., the disparities for the profile are determined and stored
in the sheet-of-light model.

for Index := 1 to 290 by 1

read_image (ProfileImage, 'sheet_of_light/connection_rod_' + Index$'.3')
measure_profile_sheet_of_light (ProfileImage, SheetOfLightModelID, [])

endfor

Figure 6.13: Measure profile inside a rectangular ROI.

The default for the number of profiles to measure is 512. You can change it with the parameter ’num_profiles’
within create_sheet_of_light_model or set_sheet_of_light_param. If you measure more than the spec-
ified number of profiles, the value of ’num_profiles’ is automatically adapted in the model. Nevertheless, this
adaptation requires additional runtime. Thus, we recommend to set ’num_profiles’ to a suitable value before
starting the measurement. Note that the number of measured profiles defines the number of rows and the width of
the ROI used for the measurement defines the number of columns for the result images (i.e., the disparity image,
the X, Y, and Z images, and the score image).

After all measurements were performed, the results of the sheet-of-light measurement are queried with calls to
get_sheet_of_light_result and get_sheet_of_light_result_object_model_3d. Here, we query the
disparity image (ResultName set to ’disparity’), the images X, Y, and Z (ResultName set to ’x’, ’y’, and
’z’, respectively), and the 3D object model. The images X, Y, and Z are shown in figure 6.14. The 3D object
model is interactively displayed using the procedure visualize_object_model_3d as shown in figure 6.15.

The interpretation of the gray values of the disparity image and the images X, Y, and Z is as follows: black parts
are outside of the domain of the resulting image, i.e., they indicate parts for which no 3D information could be
reconstructed. For the pixels inside the domain of the image bright parts show low object parts and dark parts show
higher object parts. Note that in this example the images are not visualized by their default gray values but are
converted additionally by a look-up table so that the images are colored. This is done because the human eye can
separate much more colors than gray values. Thus, details can be better distinguished during a visual inspection.

get_sheet_of_light_result (Disparity, SheetOfLightModelID, 'disparity')
get_sheet_of_light_result (X, SheetOfLightModelID, 'x')
get_sheet_of_light_result (Y, SheetOfLightModelID, 'y')
get_sheet_of_light_result (Z, SheetOfLightModelID, 'z')
get_sheet_of_light_result_object_model_3d (SheetOfLightModelID, \

ObjectModel3DID)

6.4.2 Uncalibrated Sheet-of-Light Measurement

The uncalibrated sheet-of-light measurement is shown in the HDevelop example program %HALCONEXAMPLES%\

hdevelop\Applications\Measuring-3D\reconstruct_connection_rod_uncalib.hdev. Here, no cali-
bration results are needed, so we simply create the model for the specified region of interest and set the few needed
parameters directly within create_sheet_of_light_model.

gen_rectangle1 (ProfileRegion, 120, 75, 195, 710)

create_sheet_of_light_model (ProfileRegion, ['min_gray', 'num_profiles', \

'ambiguity_solving', 'score_type'], [70, 290, \

'first', 'width'], SheetOfLightModelID)

The actual measurement is applied by the same process used for the calibrated measurement.

S
he

et
of

Li
gh

t

C-160 Laser Triangulation with Sheet of Light

Figure 6.14: Result of calibrated sheet-of-light measurement: images representing the (from top to bottom) x, y, and
z coordinates of the object.

Figure 6.15: Result of calibrated sheet-of-light measurement: 3D object model.

for Index := 1 to 290 by 1

read_image (ProfileImage, 'sheet_of_light/connection_rod_' + Index$'.3')
measure_profile_sheet_of_light (ProfileImage, SheetOfLightModelID, [])

endfor

As result, we can only query the disparity image (see figure 6.16) and the score (see section 6.5) of the measurement
(ResultName set to ’score’).

get_sheet_of_light_result (Disparity, SheetOfLightModelID, 'disparity')
get_sheet_of_light_result (Score, SheetOfLightModelID, 'score')

6.5 Using the Score Image

Caused by the specific characteristics of a laser line projector and the general principle of triangulation the results
of a sheet-of-light measurement, i.e., the disparities or the calibrated coordinates, sometimes show disturbing

6.5 Using the Score Image C-161

Figure 6.16: Result of uncalibrated sheet-of-light measurement: disparity image.

artifacts. The score image can be used to detect and partially remove artifacts.

There are two types of artifacts. The first type is caused by the geometry of the surface that is to be reconstructed.
As illustrated in figure 6.17, compared to flat and smooth surfaces (e.g., the object in figure 6.16), curved surfaces
with a small radius of curvature and surfaces with a significant slope lead to a broadening of the light line. Further-
more, the light distribution within the profile might be no longer symmetric, which leads to a reduced measurement
accuracy.

Laser line
projecor

Laser line
projecor

Object

Camera

Object

Image of laser line Gray value distribution

light−scatter

light−scatter

Image of laser line Gray value distribution

for the profile

for the profile
Camera

Figure 6.17: Curved surfaces with a small radius of curvature and surfaces with a significant slope lead to a broaden-
ing of the light line and thus to a low score: (top) small influence of curvature, (bottom) large influence
of curvature.

By using the width of the profile stored in the score image (for each pixel of the disparity, the score value is set to
the number of pixels used to determine the disparity value) it is possible to detect artifacts and to reject the corre-
sponding disparities or the corresponding calibrated coordinates. Figure 6.18 shows the score image obtained by
the uncalibrated sheet-of-light measurement performed in the HDevelop example program %HALCONEXAMPLES%\

hdevelop\Applications\Measuring-3D\reconstruct_connection_rod_uncalib.hdev. The gray val-
ues inside the score image indicate the widths of the laser line in each pixel. Thus, artifacts, in this case parts
with a significantly broadened laser line, can be recognized easily by their brightness.

In the example, the artifacts are rejected from the disparity image by applying a threshold to the score image (pixels
with a value larger than 7.5 are rejected) and reducing the disparity image to the obtained region.

S
he

et
of

Li
gh

t

C-162 Laser Triangulation with Sheet of Light

Figure 6.18: Result of uncalibrated sheet-of-light measurement: score image (score_type set to ’width’, i.e., bright
parts indicate artifacts).

threshold (Score, ScoreRegion, 1.5, 7.5)

reduce_domain (Disparity, ScoreRegion, DisparityReduced)

The second type of artifacts is caused by the interaction of the coherent laser light with the surface of the object.
Laser light produces disturbing interference patterns when it is projected on a rough textured surface. Those
interference patterns are called speckle and can be considered as a non-additive noise, which means that this
noise can not be reduced by averaging during the image acquisition. In this case, the only way to increase the
measurement accuracy is to use a higher aperture for the image acquisition or a low-speckle line projector. Note
that enlarging the aperture for the image acquisition device will also reduce the depth of field which might be
an undesired side effect. If your application requires high accuracy, we strongly recommend to use low-speckle
projection devices. Note that speckle in most cases is the limiting factor for the accuracy of laser triangulation
systems.

6.6 3D Cameras for Sheet of Light

The proceeding described in the previous sections works for any standard 2D camera that is suitable for machine
vision. An alternative is to use specific 3D cameras for which the sheet-of-light measurement is applied inside
the camera. These cameras are more expensive than standard 2D cameras, but the sheet-of-light measurement
becomes significantly faster because of the reduced CPU load. Using one of these cameras, you simply access the
camera with HALCON and basically leave the measurement to the camera.

Generally, we distinguish between cameras with an inbuilt laser, i.e., the camera and the laser are integrated in a
single unit, and cameras for which the laser is mounted separately.

If the camera and the laser are integrated in a single unit, the measurement setup is restricted to a fixed angle of
triangulation and should be oriented in a defined way. For example, the SICK Ruler camera should be oriented
so that the laser is perpendicular to the linear positioning system. Because of the preset measurement setup, the
camera and the orientation of the light plane with respect to the world coordinate system are already calibrated.
Thus, no further processing with HALCON is needed to obtain calibrated height profiles.

If the camera and the laser are mounted separately, any configuration of the measurement setup is possible (see sec-
tion 6.2 on page 147), but by default the result of the measurement is uncalibrated. If the result of the measurement
is needed in world coordinates, you can either query the uncalibrated data from the camera and subsequently apply
a calibration with HALCON as described in section 6.4 on page 157, or, before performing the actual measure-
ment, you apply a calibration that is provided specifically for the selected camera. For the SICK Ranger cameras,
e.g., the camera-specific calibration needs the software provided with the camera (the SICK Coordinator tool) and
a specific calibration object that has to be purchased separately.

Note that in contrast to the proceeding described in the previous sections, the movement of the linear positioning
system is mostly assumed to be known, because the measurement of each profile is triggered by a signal coming
from an encoder on the linear positioning system. That is, when working with an encoder and if the thus obtained
accuracy is sufficient, it is not necessary to calibrate the distance between two profiles.

Depth from Focus C-163

Chapter 7

Depth from Focus

Depth from focus (DFF) is a method that enables the reconstruction of 3D surface information from several images
taken at different focus distances between camera and object. It allows a highly accurate non-destructive 3D mea-
surement of surfaces. The example shown in figure 7.1 was done using microscopic optics with 10x magnification
and reaches an accuracy of about 5 micrometers. DFF is even more precise than the methods stereo chapter 5 on
page 117 and laser triangulation with sheet of light chapter 6 on page 147. Furthermore, the setup requires only
a single camera, therefore, it is possibly more compact than, e.g., a stereo setup. DFF requires, however, cameras
with telecentric or microscope lenses in order to achieve a (nearly) parallel projection. Therefore, DFF is only suit-
able for small objects. Examples for suitable objects in semiconductors industry are a ball grid array (BGA) (the
result of DFF on a single ball of a BGA can be viewed in figure 7.1) or solder paste inspection, another application
in the engineering sector is the inspection of indexable inserts.

Figure 7.1: This image shows the 3D surface reconstruction of a single ball on a ball grid array.

7.1 The Principle of Depth from Focus

With depth from focus, you can reconstruct the surface of a 3D object based on the knowledge that object points
have different distances to the camera and the camera has a limited depth of field. Depending on the distance and
the focus, object points are displayed more or less sharply in the image, i.e., only those pixels within the correct
distance to the camera are focused. Taking images with various object distances, each object point can be displayed
sharply in at least one image. Such a sequence of images is called “focus stack”. By determining in which image
an object point is in focus, i.e., sharply imaged, the distance of each object point to the camera can be calculated.
This principle is clarified in figure 7.2.

D
ep

th
fr

om
Fo

cu
s

C-164 Depth from Focus

best focus point

focus stack

row

focus value for each pixel

image n−l

image n

image

column
depth

Figure 7.2: This figure shows the focus stack of images on the left side and the corresponding focus value - that is
determined for each pixel - on the right side. The best focus point is the image where a pixel has the
highest sharpness.

For more information about determining sharpness, please refer to %HALCONEXAMPLES%\hdevelop\

Applications\General\determine_sharpness.hdev. In this example, a flat object is imaged, and the global
sharpness of the image is determined. In the case of DFF, the sharpness will be determined for each single pixel. If
you need real three-dimensional information, e.g., if you want to further use your DFF results for any 3D measure-
ments or surface-based matching (see section 4.3 on page 104 you need to telecentrically calibrate your system.
Information on how to perform a calibration can be found in the chapter about 3D camera calibration (section 3.2
on page 61).

Depth of field (DOF) is a similar term which, however, is not a method but a technical term concerning the camera.
The depth of field is the range of distance within which the image is sharp as opposed to the best focus point, which
is the point with perfect sharpness in the image. The DOF depends on the pixel size, the aperture (f-number), the
focal length in the case of a non-telecentric lens, and the focusing distance. A low depth of field means that only a
small slice of the object is sharply imaged (see figure 7.3), whereas a high depth of field means that a big part or
maybe the whole image is sharp. For DFF, a low depth of field leads to a higher precision. In order to obtain a low
depth of field, use lenses with a high aperture which is a small f-number on your lens.

object

P1

F’

P2

object

lens CCD lens

P1

depth of fielddepth of field

b)a)

CCD

P2

F’

Figure 7.3: a) Only a small slice of the image is sharp. Therefore point P1 is mapped to a single point and is
therefore sharp, whereas P2 is mapped to a spot and is consequently blurry. b) If the object is very flat,
the whole object can be sharp at the same time, even if the depth of field is not very high.

A method for 3D surface measurement, similar to DFF, is depth from defocus. This method requires one sharp
image of the foreground and one sharp image of the background. The distance of all points that lie between
foreground and background is interpolated by their amount of blur. As it only depends on two images, it may be

7.2 Setup C-165

faster, but it is also not as precise as depth from focus. Depth from defocus is not available in HALCON.

7.1.1 Speed vs. Accuracy

As mentioned before, depth from focus allows highly accurate 3D measurements. However, this accuracy comes
at the price of a longer runtime.

7.1.1.1 Depth from Focus

DFF may consume more processing time due to the number of images that may need to be processed. This does,
however, depend on the actual number of images that are necessary for the specific task. Generally speaking, the
more images need to be processed, the higher the accuracy, the longer the runtime. Therefore, for some applications
the runtime will naturally not be very high, because the required accuracy may be lower. Nevertheless, the runtime
can also be improved for applications that require a high accuracy as well as for those which require a low accuracy.
Internally, the speed of HALCON’s depth_from_focus is increased using parallelization (only available in the
’local’ mode).

7.1.1.2 Depth from Focus vs. Other Methods

Due to the high number of images that have to be processed, the data volume is also high. This leads to a reduced
speed compared to other methods. DFF has proved to be very useful in the microscopical range (small objects
that are magnified more than once) and often easier to realize than other methods. In many cases, the setup can
be more compact than stereo (chapter 5 on page 117) which needs quite a lot of space due to the two cameras.
Nevertheless, the choice of a suitable lens is very important for DFF, and it can counter the advantage of using a
single camera. For small objects having dimensions smaller than some ten millimeters, Sheet of Light (chapter 6
on page 147) might become very expensive because of the thin laser line that is needed and less precise due to
speckle. Photometric stereo (see “3D Reconstruction . Photometric Stereo”) is usually more precise and easier to
realize for flat objects without steep geometric edges. For macroscopic measurements (measurement range up to
100 mm), stereo or sheet of light would be quicker as they require less images.

7.2 Setup

Before actually starting your application with depth from focus, it is important to first set up your application
environment properly. This section concentrates on the camera and application object setup to prepare the image
acquisition. Additional information about equipment and image acquisition can be read in section 7.3.1 on page
170.

7.2.1 Camera

7.2.1.1 Recommended Camera Setup and Adjustments

As performance of depth from focus for your application depends on the used lens, the depth of field and the
precision of the movements, it is important to use the right camera with the right adjustments. Please read our
recommended camera setup and adjustments for the best results:

1. If possible, use a camera with a telecentric lens. In order to perform depth from focus, a camera with
a telecentric lens or an almost telecentric lens, e.g., a microscopic imaging system, will produce the best
results. Only a telecentric lens enables you to take images with exactly the same field of view at different
focus positions. This is important because depth from focus uses image coordinates and for each pixel
finds the image in which it is displayed sharply. Only in images taken with a telecentric lens, those pixel
are comparable, i.e., in the same position. Therefore, DFF is a good method for measuring small objects,
like, e.g., microelectronic workpieces. Good results have been achieved, for example, when performing
DFF with the XENOPLAN telecentric lens series by Schneider-Kreuznach. Note however that even when
using a telecentric lens, aberration - the effect that not all pixels are in focus on a planar surface - can

D
ep

th
fr

om
Fo

cu
s

C-166 Depth from Focus

occur. Aberration influences the accuracy of DFF and should be calibrated. How to calibrate aberration
is described in section 7.4.1 on page 172. It is also possible, though not recommended due to the reasons
mentioned before, to use DFF with a standard lens. For performing DFF with a standard lens, please read
section 7.6 on page 174. A problem that is related to the lens is the correspondence problem. This refers to
effect that the position of the pixels outside the optical axis shifts when the distance is changed during image
acquisition. Those planes that lie close to the border of the field of view as well as those that lie diagonal to
the optical axis are affected most. A small depth of field reduces the effect for planes with other directions.
The correspondence problem results in wrong focus distances in the depth image. This effect is minimal
when using a telecentric lens. For telecentric lenses, it is important that the movement causing a change of
focus is applied parallel to the optical axis. For more information about this effect see figure 7.5.

2. Use mirrors to obtain focus images. For DFF, mirrors are a very good solution because they can be moved
very quickly and accurately and - if necessary - can be replaced easily and inexpensively. Moving the
camera may be harmful to the camera sensor which suffers under the vibrations. Moving the object might be
difficult as the object is probably located on a conveyor belt. All movements for DFF have to be performed
very precisely. What such a setup with camera and mirrors can look like is shown in figure 7.4. Note that
the focus should only be moved along the optical axis.

3. Use a low depth of field to achieve a higher accuracy. This requires, however, more images at different
focus positions. In contrast, large distances between the images require a higher depth of field and lead to a
less precise height reconstruction. A low depth of field requires - as stated before - images at various focus
positions.

4. Use a high aperture. The aperture needs to be as open as possible as this reduces the depth of field which is
responsible for a higher precision as mentioned before. The highest possible precision is, therefore, limited
by the depth of field.

piezo
stage

linear

object

mirror

semi−transparent
mirror

Figure 7.4: Rays from the object first cross a semi-transparent mirror and are then reflected by a mirror mounted on
a linear piezo stage. The rays then reach the semi-transparent mirror again and are this time reflected
back to the camera. By moving the mirror that is mounted on the linear piezo stage, the distance
between the object and the camera can be varied in a controlled way, which makes it possible to acquire
a sequence of images with varying focus.

7.2.1.2 Acquire Measurement Range

There are four rules that define how the measurement range can be acquired.

7.2 Setup C-167

a) o.k. b) not o.k.

parallel to the image offset

Figure 7.5: This figure illustrates the correspondence problem. In figure a), a change of focus is applied parallel to
the optical axis, which is good. If the focus is not changed parallel to the optical axis, a lateral offset
occurs, as depicted in figure b).

First rule: The distance range has to exceed the height of the measure object.

Second rule: The range in which the image part changes from blurred over sharp to blurred should be approx-
imately five images (as depicted in figure 7.6). Otherwise, areas of the object’s surface cannot be determined
correctly and, therefore, cannot be measured precisely.

Third rule: As the depth of field of the used lens is fixed, the minimum number of focus positions has to exceed:

focus range in m
depth of field of the used lens

The reason for this is the shifted depth of field area of the lens. This shift needs to be smaller than the depth of field
of the lens so that the depth of field areas from two successive images can overlap. The more those images overlap,
the higher the achieved precision. The downside is an increased runtime due to the high number of images. You
cannot, however, increase precision indefinitely as it is also limited by the camera noise. The smaller the overlap,
the smaller the achieved precision, the shorter the runtime.

Fourth rule: If there is a limit to the number of images that can be acquired, for example, because you have limited
runtime, the depth of field of the used lens needs to be increased (e.g., by closing the aperture of the lens).

Images from a focus stack can be viewed in figure 7.7.

depth of field

y

x

object

sharp pixel

measurement range

Figure 7.6: This image depicts an object from which images are taken at different focusing distances (indicated by
the dashed lines) for a focus sequence. It also exemplarily shows the depth of field, consisting of five
images in which the image with the sharpest pixel is marked by a dot.

Depending on the direction of image acquisition, i.e., from the camera or towards the camera, the result of the
measurement is either a distance image or a height image.

D
ep

th
fr

om
Fo

cu
s

C-168 Depth from Focus

b) c)a)

Figure 7.7: The images above are part of a focus sequence. They show the same object but are taken at different
focus positions. Image a) focuses on the top of the object, image b) is sharp at a medium height and
image c) is sharp in the background.

7.2.2 Illumination

7.2.2.1 Choosing Illumination

In order to enhance the surface texture of the object, direct illumination is needed. At the same time, reflections
have to be minimized. Therefore, coaxial and light-field lighting would not work. A suitable lighting could be an
illumination from various directions, as depicted in figure 7.8, because lighting that comes from different directions
enhances the structure very well and also causes few reflections. As an alternative dark-field lighting is also
possible, because the low angle enhances the surface structure - it does, however, result in an image that has quite
dark parts in some areas. Other illumination setups can be used as long as the lighting enhances the surface texture
and causes as few reflections as possible. A suitable illumination, therefore, highly depends on the application
object’s features. For more information about lighting, please refer to the Solution Guide II-A,appendix C.1 on
page 49.

object

Figure 7.8: Illumination from various directions leads to good results for depth from focus. It can, for example, be
produced with lights that are arranged within a dome.

7.2.2.2 Overexposure

Overexposure is an illumination-connected problem that may occur and reduce the accuracy of the resulting im-
age. It leads to a loss of information in the overexposed region which then reaches saturation (a gray value of
255). Furthermore, overexposure causes the detection of false sharp pixels in blurry areas which are the result
of high frequencies between saturated image areas and blurry areas. The results of overexposure are visualized
in figure 7.9. In order to avoid overexposure, it is recommended to take darker images for your measurements

7.2 Setup C-169

and improve visualization with the operators scale_image and scale_image_max as presented in the example
section 7.3.2.1 on page 171.

row

column
depth

255

best focus point

focus value for each pixel
0

x

0 255

depth

x

best focus point

focus stack

a) b)

false edges

Figure 7.9: a) The sharp pixel in this figure is overexposed. b) If wider parts of the image are overexposed, instead
of detecting the correct location of a sharp pixel, wrong sharp pixels are detected at the border between
the saturated image areas and the blurry image areas.

7.2.3 Object

In order to successfully perform DFF, it is important to know your application object.

First of all, DFF is a practical method for any small object with textured surface. For objects that are larger than
that, there are several other 3D methods available like binocular stereo (chapter 5 on page 117). DFF can, however,
still be used for very high objects that would usually require a very high number of images and thus slow down
the measuring process a lot. If the height of such an object is required there are two possibilities of gaining these
measuring results.

• One possibility is to take a certain number of images (e.g., 10) that depict the bottom of the object, then also
take a certain number of images showing the top of the object. Because you know the distance between the
highest image that is taken of the bottom of the object and the first image taken of the top of the object, you
can just add this height to the images taken of the top of the object.

• Another possibility is to acquire two sequences: one has to be taken around the bottom of the object and
another one at the top of the objects. Within each of the sequences the sharpest level is detected. As the
movement of the motor that determines the acquisition of images at different focus levels is known, the
distance between those images can be calculated.

Two image sequences are acquired, one taken around the highest point of measurement and one sequence around
the lowest point of measurement. Once, the sharpest pixels at the highest and lowest point are found, the height
can be calculated.

Regular (passive) DFF can be used for objects with a textured surface. Fortunately, small objects mostly have a
structured surface when observed at a suitable magnification. The exception are perfectly polished, i.e., specular
surfaces.

If there is very little texture on the object, it is possible to still perform the so-called active depth from focus. Active
DFF compensates for the missing surface structure by projecting a texture on the object. When performing active
DFF, it is possible to produce focus images with the projector. It is, however, necessary that - for every image that
is taken - the depth of field of the camera is conform with the depth of field of the projector. Active DFF does work
for objects with little texture on their surfaces, it does not work for reflecting surfaces, though.

D
ep

th
fr

om
Fo

cu
s

C-170 Depth from Focus

7.3 Working with Depth from Focus

Depth from focus requires a focus stack of images, i.e., images that each have a different distance to the object
and in which, therefore, different pixels are sharp. Depth from focus is then applied to this focus stack returning a
sharp image, i.e., an image containing only gray values from focused, sharp pixels as these are the relevant pixels
for DFF, as well as a depth image showing the three-dimensional shape of the object that is inspected. Those two
results can be viewed in figure 7.10.

7.3.1 Rules for Taking Images

There are several rules that should be followed when taking images for measuring with depth from focus. Those
rules concern image quality as well as the system setup.

7.3.1.1 Rules for Achieving a High Image Quality

1. Avoid overexposure.

2. Avoid reflections.

3. Use a camera with a wide dynamic range.

4. Use direct illumination - preferably from several directions.

5. Use a camera with low noise.

6. The maximum number of images is limited by camera noise. Taking more images to cover the whole
object only improves the precision of the reconstruction to a certain degree which is, amongst others, limited
by the camera noise.

7. As a rule of thumb, the minimum number of images that should be acquired for DFF is 10 and the
maximum number is about 150. While 10 images can be just sufficient for measuring (depending on the
required accuracy), more than 150 images will usually not improve accuracy any more. The corresponding
formula would be:
object height
depth of field

× 5

7.3.1.2 Rules for the Best Results with your System Setup

1. Cover the whole distance range.

2. Let the depth of field areas overlap (see figure 7.6).

3. The distance between the light source and the object should remain constant.

4. The optical system should enable an orthographic projection (parallel projection), i.e., use a telecentric
lens or a microscope in your system setup. If this is impossible, please read section 7.6 on page 174.

5. The axis of the focusing displacement must be parallel to the optical axis of the lens, otherwise the
object shifts laterally within the focus sequence.

6. Do not move the camera or object in x or y direction. DFF does not work on an object that is, e.g., moving
on a conveyor belt between images or an object that is moved by any kind of vibration or agitation.

Note that the quality of your measuring results does depend on the quality of the input images and you should
therefore aim to achieve the highest possible quality.

7.3 Working with Depth from Focus C-171

7.3.2 Practical Use of Depth from Focus

7.3.2.1 Example Application: Inspecting a PCB with DFF

This section describes an example application where the task is to test if a PCB board is covered
by an appropriate amount of soldering paste. This inspection is performed with DFF and can be
viewed in the HDevelop example program %HALCONEXAMPLES%\hdevelop\Applications\Measuring-3D\

measure_solder_paste_dff.hdev (for more information also refer to the example %HALCONEXAMPLES%\

hdevelop\Applications\Measuring-3D\measure_bga_dff.hdev which is a similar program showing how
a ball grid array is measured with DFF). An image sequence is acquired and a height map of the single circuits and
pads is calculated. This way parts that have no soldering paste can be identified as well as those that are covered
sufficiently.

First all necessary images for the focus series have to be acquired and combined to a multi-channel image with the
operator channels_to_image.

read_image (ImageArray, 'dff/focus_pcb_solder_paste_' + Sequence$'02')
channels_to_image (ImageArray, Image)

Then, depth from focus is performed, a depth map is calculated and all sharp gray values are selected. Both
results can be used for further processing. Depth from focus is performed with the HALCON operator
depth_from_focus. The channel number is returned for each pixel together with a confidence value, which
is an indicator for the quality of the distance value. Pixels with the best focus are chosen. The method can be
selected with the parameters Filter and Selection.

It is striking that the images are very dark, when looking at the images in the example %HALCONEXAMPLES%\

hdevelop\Applications\Measuring-3D\measure_solder_paste_dff.hdev. They have been acquired
like this on purpose to avoid overexposure. However, to improve the visibility of the object’s surface in the image,
the operator scale_image enhances the sharpness, scale_image_max spreads the gray values in the image to
improve visibility despite of the darkness. For more information on depth from focus and overexposure please
refer to section 7.2.2.2 on page 168. median_rect suppresses unwanted outliers.

depth_from_focus (Image, Depth, Confidence, 'bandpass', 'next_maximum')
select_grayvalues_from_channels (Image, Depth, SharpenedImage)

scale_image (SharpenedImage, ImageScaled, 4, 0)

scale_image_max (Depth, ImageScaleMax)

median_rect (ImageScaleMax, DepthMean, 25, 25)

Finally, the results - the sharp image as well as the 3D plot - are displayed as shown in figure 7.10. A sharp
image is reconstructed by selecting the gray value of each pixel that is in focus for each coordinate using the depth
image as index table. The focus stack and the depth image are used as input to reconstruct a focused image using
the parameters MultiChannelImage, IndexImage and Selected. Sharp gray values can be identified by high
frequencies, i.e., high edge amplitudes in the image, i.e., where the gray-value information changes quickly. For
each sharp pixel, a confidence score is returned.The amount of sharpness defines the score. Furthermore, a 3D plot
of the object in the image is calculated which is helpful for detecting defects.

dev_open_window (0, Width * 0.7 + 5, Width * 0.7, Height * 0.7, 'black', \

WindowHandle3D)

dev_set_paint (['3d_plot', 'texture'])
compose2 (DepthMean, ImageScaled, MultiChannelImage)

dev_display (MultiChannelImage)

7.3.3 Volume Measurement with Depth from Focus

In contrast to stereo, the height information is not calibrated for depth from focus. The values in the height image
are indices of input images. To measure a real world height or volume, the distance in between these images must
be known. The easiest case is that images are taken with the same movement z. If two coordinates differ by an
index value of n, the real world distance will be z × n, with the unit of z. The unit in x and y, i.e., the size of a
pixel must be known. Make sure that all dimensions are given in the same unit. Volume can be determined with
the operator area_center_gray by adding up the pixel values which are equal to the height values. The resulting
value must be multiplied by x, y and z.

D
ep

th
fr

om
Fo

cu
s

C-172 Depth from Focus

a) b)

Figure 7.10: Results of the PCB solder inspection: a) a synthetic sharp image and b) a 3D plot of the object.

7.4 Solutions for Typical Problems With DFF

There are two main problems that occur with depth from focus: overexposure and reflections.

1. Overexposure leads to extreme values (255) and results in peaks within the constant gray-value range of an
image. This means that even within parts of the images that are blurry, the difference between neighboring
gray values is so dominant that false edges might be detected (this effect is visualized in figure 7.9 on page
169). Adjusting your illumination to minimize reflections can reduce overexposure For more information on
suitable illumination and handling overexposure, please refer to section 7.2.2 on page 168.

2. Object surfaces may reflect too much for measuring with depth from focus. One advantage of depth from
focus is, however, that you are very close to the object. Therefore, some objects that seem to have a reflecting
surfaces might under the microscope show some surface texture after all. Try to minimize reflections with
diffuse illumination as described in section 7.2.2 on page 168. Furthermore, aberration occurs for DFF
especially when images were taken with a standard lens but it also cannot totally be avoided for telecentric
lenses either.

7.4.1 Calibrating Aberration

7.4.1.1 Aberration

Aberration is the effect that, when looking perpendicularly on a planar surface, not all pixels are in focus at the
same time. Either the center or the outer part of the image are completely in focus. This effect is illustrated in
figure 7.11.

Aberration is the curvature of field that effects images taken with cameras using standard lenses but also cannot be
completely avoided when using cameras with telecentric lenses. It results in an error in the depth image.

There are two main kinds of optical aberration:

1. Spherical aberration occurs when light rays have different focus points depending on their distance to the
optical axis, i.e., the center part and the border of the image are not simultaneously sharp, even though a
planar object is imaged.

2. Coma is the asymmetric accumulation of light intensity for off-axis points. It effects the periphery of the
field of view. This kind of aberration is, however, not relevant here and is just mentioned for the sake of
completeness.

The following paragraph describes how to calibrate spherical aberration and therefore avoid errors.

7.5 Special Cases C-173

a) b)

Figure 7.11: Image a) is an example for aberration. It is sharp in the middle and pixels become more blurry the
further away they are from the center. Image b) shows a graphic that clarifies what happens when
aberration occurs.

7.4.1.2 Setup Aberration Calibration

In order to get an accurate result from your depth from focus application, aberration has to be calibrated. This
enables the calculation of correct sharp depth images and also enable further processing of the DFF results.

Rules for setting up your calibration to correct aberration.

1. A planar surface with reasonable texture is needed as reference plane.

2. The camera has to be mounted perpendicular to the surface (angles can be determined with HALCON’s
camera calibration if necessary).

3. It is important that the same distance and camera setting are used as will be applied during application!

4. Using depth from focus, the “curvature on the surface”, i.e., the aberration is determined.

5. The extracted reference surface is used to correct the later measurements.

6. It is recommended to store the reference image to file for further use.

7. It is recommended to store the used parameters to file for further use.

8. The aberration can be approximated by a paraboloidal function.

9. The approximation has the advantage of reducing noise effects that influence the measurements.

10. The parameters of the paraboloidal function can be used to generate a reference image.

11. By subtracting the reference image from the depth measurement the error caused by the aberration
can be corrected.

7.5 Special Cases

Depth from focus may not always be used to reconstruct the three-dimensional surface of an object in order to
subsequently measure it.

It may also be used to obtain a sharp image of the object if this is not otherwise possible due to the setup and
continue working with this image.

Another possibility of using the DFF method is simply checking whether an object is present or not. Therefore,
the lens is focused on a certain depth. If sharp pixels are found within an image at this certain depth, the object is
present, otherwise it is missing. In this case, only one image can be sufficient.

Similarly, it can be used to check whether an object is tilted or not.

D
ep

th
fr

om
Fo

cu
s

C-174 Depth from Focus

7.6 Performing Depth from Focus with a Standard Lens

Even though not recommended, it is possible to perform depth from focus with standard lenses. Using a non-
telecentric lens does, however, require some adaptations of the DFF measuring process to ensure the best results.

Note that the accuracy of DFF measurements with a standard lens instead of a telecentric lens is reduced. For DFF
with standard lenses, the focal length needs to be as long as possible in order to keep the perspective shift of the
points in the field of view small. Furthermore, the depth of field needs to be small.

If the points shift too much within the field of view, measuring with DFF produces an erroneous result.

Calibrate aberration as described in section 7.4.1 on page 172.

Note that the rules that have been described for DFF with a telecentric lens are also valid for DFF with a standard
lens.

Robot Vision C-175

Chapter 8

Robot Vision

A typical application area for 3D vision is robot vision, i.e., whenever robots are equipped with cameras that supply
information about the parts to be handled. Such systems are also called “hand-eye systems” because the robotic
“hand” is guided by mechanical “eyes”.

In order to use the information extracted by the camera, it must be transformed into the coordinate system of
the robot. Thus, besides calibrating the camera(s) you must also calibrate the hand-eye system, i.e., determine
the transformation between camera and robot coordinates. The following sections explain how to perform this
hand-eye calibration with HALCON.

Please note that in order to use HALCON’s hand-eye calibration, the camera must observe the workspace of the
!robot. If the camera does not observe the workspace of the robot, e.g., if the camera observes parts on a conveyor

belt, which are then handled by a robot further down the line, you must determine the relative pose of robot and
camera with different means.

The calibration result can be used for different tasks. Typically, the results of machine vision, e.g.,
the position of a part, are to be transformed from camera into robot coordinates to create the ap-
propriate robot commands, e.g., to grasp the part. Section 8.7 on page 185 describes such an ap-
plication. Additionally, the HDevelop programs %HALCONEXAMPLES%\hdevelop\Applications\

Robot-Vision\pick_and_place_with_2d_matching_moving_cam.hdev and %HALCONEXAMPLES%\

hdevelop\Applications\Robot-Vision\pick_and_place_with_2d_matching_stationary_cam.hdev

show how to grasp objects using the hand-eye calibration data. These examples can be adapted easily for all kinds
of pick-and-place-applications.

Another possible application for hand-eye systems is to transform the information extracted from different camera
poses of a moving camera into a common coordinate system.

8.1 Supported Configurations

The hand-eye calibration of HALCON supports different configurations, i.e., kinds of robots and sensors and ways,
the sensor is mounted. In the following, these configurations are briefly discussed.

8.1.1 Articulated Robot vs. SCARA Robot

The arm of an articulated robot (figure 8.1a) typically has three rotary joints covering 6 degrees of freedom (3
translations and 3 rotations). In contrast, SCARA (selective compliance articulated robot arm) robots (figure 8.1b)
have typically three parallel rotary joints and one parallel prismatic joint covering only 4 degrees of freedom (3
translations and 1 rotation).

Articulated (anthropomorphic) robots can pick up a part, no matter how it is oriented and then insert it into a
package that may require a special angle under which it is approached. Therefore, they can be used in a very
flexible manner. In contrast, SCARA robots are restricted in their movements. They cannot tilt the tool. But
they offer faster and more precise performance. They are best suited for high-speed pick and place, packaging,

R
ob

ot
V

is
io

n

C-176 Robot Vision

(a) (b)

Figure 8.1: Different kinds of robots: (a) Articulated robot and (b) SCARA robot.

and assembly applications. Because of their compact structure, SCARA robots are often preferred if only limited
space is available.

The hand-eye calibration of articulated robots and of SCARA robots is very similar, with the exceptions that for
SCARA robots the camera must be calibrated prior to the actual hand-eye calibration and that it is necessary to
resolve one ambiguity by manually moving the tool of the robot to a known position. These points where the
calibration of SCARA robots differs from the calibration of articulated robots are described in section 8.3 on page
179 and section 8.6 on page 184.

8.1.2 Camera and Calibration Plate vs. 3D Sensor and 3D Object

Depending on the application, either an optical camera or a 3D sensor is used to identify the objects and to deter-
mine their pose. If a camera is used, for the calibration of the hand-eye system, a calibration plate or calibration
object is required (figure 8.2a). Note that the automatic detection of the calibration object works only if one of
the HALCON calibration plates (section 3.2.3.1 on page 67) is used. If a 3D sensor is used (figure 8.2b), the pose
of known 3D objects can be determined, e.g., with surface-based matching (Solution Guide I, chapter 11 on page
101). These poses can then directly be used for the calibration of the hand-eye system.

(a) (b)

Figure 8.2: Different kinds of sensors: (a) Camera with HALCON calibration plate and (b) 3D sensor with 3D object.

Note that, although in the following only systems with a single camera are described, you can of course also use a

8.2 The Principle of Hand-Eye Calibration C-177

stereo camera system (see section 5.2.4 on page 124). By distinctly calibrating the stereo system beforehand you
determine the relation between its cameras. In this case, when calibrating your hand-eye system afterwards (with
its own calibration model), you typically calibrate only the relation of the robot to one of the cameras.

8.1.3 Moving Camera vs. Stationary Camera

There are two possible scenarios for mounting the camera:

Moving camera
The camera is mounted at the tool and is moved to different positions by the robot.

Stationary camera
The camera is mounted externally and does not move with respect to the robot base.

Figure 8.3 depicts these two scenarios. Note that different poses must be determined by the hand-eye calibra-
tion with a moving camera compared to the hand-eye calibration with a stationary camera. In the following, the
paragraphs that affect only one of these scenarios are marked respectively.

a) b)

Figure 8.3: Robot vision scenarios: (a) moving camera, (b) stationary camera.

Note that HALCON’s hand-eye calibration is not restricted to systems with a “hand”, i.e., a manipulator. You can
also use it to calibrate cameras mounted on a pan-tilt head or surveillance cameras that rotate to observe a large
area. Both systems correspond to a camera mounted on a robot; the calibration then allows you to combine visual
information from different camera poses.

For the hand-eye calibration with a stationary camera, the example %HALCONEXAMPLES%\hdevelop\

Calibration\Hand-Eye\calibrate_hand_eye_stationary_cam_approx.hdev is available, which shows
two alternative workflows to perform a hand-eye calibration, either with or without a HALCON calibration plate.

8.1.4 Calibrating the Camera in Advance vs. Calibrating It During Hand-Eye
Calibration

For articulated robots that are used together with one camera, it is possible to calibrate the camera together with
the hand-eye setup. For SCARA robots and all systems that use stereo or multi-view setups, the camera(s) must be
calibrated distinctly in advance.

8.2 The Principle of Hand-Eye Calibration

Like the camera calibration (see section 3.2 on page 61), the hand-eye calibration is based on providing multiple
images of a known calibration object. But in contrast to the camera calibration, here, the calibration object is not
moved manually. Either it is moved by the robot in front of a stationary camera or the robot moves the camera
over a stationary calibration object. The pose, i.e., the position and orientation, of the robot tool in robot base
coordinates for each calibration image must be known with high accuracy!

!This results in a chain of coordinate transformations (see figure 8.4 and figure 8.5). In this chain, two transfor-
mations (poses) are known: the pose of the robot tool in robot base coordinates baseHtool and the pose of the
calibration object in camera coordinates camHcal, which is determined from the calibration images. The hand-eye

R
ob

ot
V

is
io

n

C-178 Robot Vision

x

z

y z

x

y

z

y

x

base

tool

cal. object

camera

zoom

H
base

tool

H
base

cal

H tool

cam

H cal

cam

H tool

cam

z
y

x

Figure 8.4: Chain of transformations for a moving camera system.

calibration then estimates the other two poses, i.e., the relation between the robot and the camera and between the
robot and the calibration object, respectively. Note that the chain consists of different poses depending on the used
scenario.

Moving camera
For a moving camera, the pose of the robot tool in camera coordinates and the pose of the calibration object
in robot base coordinates are determined (see figure 8.4):

camHcal = camHtool · toolHbase · baseHcal (8.1)

In this chain the inverse input pose, i.e., the pose of the robot base in tool coordinates, is used.

toolHbase = (baseHtool)
-1

(8.2)

However, the inversion of the pose is done internally by the hand-eye calibration algorithm.

Stationary camera
For a stationary camera, the pose of the robot base in camera coordinates and of the calibration object in
robot tool coordinates are determined (see figure 8.5):

camHcal = camHbase · baseHtool · toolHcal (8.3)

yz

x

z

x

y z

x

y

base

tool

camera

cal. object

zoom

H
base

tool

H
cam

base

H cal

cam

H cal

tool

z
y

x

Figure 8.5: Chain of transformations for a stationary camera system.

8.3 Calibrating the Camera in Advance C-179

Once all input data has been set as detailed in section 8.4, the hand-eye calibration is performed with a single call
of the operator calibrate_hand_eye.

calibrate_hand_eye (CalibDataID, Errors)

Let’s have a brief look at the parameters. The referenced sections contain more detailed information:

• CalibDataID

As for the camera calibration, you have to prepare a calibration input data model by setting all required input
data. Specifically, the observed poses of the calibration object in camera coordinates and the corresponding
poses of the robot tool in robot base coordinates have to be set. This is described in detail in section 8.4.

• Errors

These errors represent the quality assessment of the transformations determined during the hand-eye
calibration. How to use the transformations and how to interpret the quality values in robot vision
applications is described in section 8.7 on page 185. If you get a high error, use the procedure
check_hand_eye_calibration_input_poses to check the input poses for consistency.

Besides the coordinate systems described above, two others may be of interest in a robot vision application: First,
sometimes results must be transformed into a reference (world) coordinate system. You can define such a coor-
dinate system easily based on a calibration image. Secondly, especially if the robot system uses different tools
(grippers), it might be useful to place the tool coordinate system used in the calibration at the mounting point of
the tools and introduce additional coordinate systems at the gripper (tool center point). The example application in
section 8.7 on page 185 shows how to handle both cases.

8.3 Calibrating the Camera in Advance

This step is not required for 3D sensors and it is optional for articulated robots that are used together with one
camera, but it is obligatory for SCARA robots and for all systems with a stereo or multi-view camera setup.

Articulated robot

For hand-eye systems with an articulated robot and one camera, typically, the camera is calibrated together
with the whole hand-eye system. Therefore, it is not necessary to calibrate the camera in advance.

If a stereo or multi-view camera setup is used instead of one camera, these cameras must be calibrated in
advance by the method described in section 5.2 on page 122. If such a calibrated camera setup is used
for hand-eye calibration (or if one already calibrated camera is used whose camera parameters should be
preserved), the internal camera parameters must be excluded from the optimization with

set_calib_data (CalibDataID, 'camera', 'general', 'excluded_settings', \

'params')

SCARA robot

For hand-eye systems with a SCARA robot, the camera must be calibrated in advance (see, e.g., section 3.2
on page 61). The internal camera parameters are automatically excluded from the optimization.

For a simple camera calibration, have a look at the HDevelop example program %HALCONEXAMPLES%\hdevelop\

Calibration\Hand-Eye\calibrate_hand_eye_stationary_cam_approx.hdev, which includes a camera
calibration with a single calibration image.

8.4 Preparing the Calibration Input Data

Below, we show how to prepare the data in the calibration data model CalibDataID that is
then used by calibrate_hand_eye. The code examples mostly stem from the HDevelop pro-
grams %HALCONEXAMPLES%\solution_guide\3d_vision\hand_eye_movingcam_calibration.hdev and

R
ob

ot
V

is
io

n

C-180 Robot Vision

%HALCONEXAMPLES%\solution_guide\3d_vision\hand_eye_stationarycam_calibration.hdev, which
perform the calibration of hand-eye systems with a moving and a stationary camera, respectively. The program
%HALCONEXAMPLES%\solution_guide\3d_vision\hand_eye_movingcam_calibration_poses.hdev per-
forms the hand-eye calibration by directly setting the poses of the calibration object obtained with a 3D sensor.

8.4.1 Creating the Data Model

First, a calibration data model for the hand-eye calibration has to be created. The following types are supported:

Robot type (see section 8.1.1 on page 175):

• Articulated robot

• SCARA robot

Sensor type (see section 8.1.2 on page 176):

• Camera (with calibration plate)

• 3D sensor (with 3D object)

Camera mounting type (see section 8.1.3 on page 177):

• Stationary camera

• Moving camera

Note that in connection with the mounting type (stationary or moving camera (=’eye’)), always the term camera is
used, even if a 3D sensor is used.

The robot type and the camera mounting type are defined in the parameter CalibSetup of create_calib_data.
For example, ’hand_eye_moving_cam’ defines a system of an articulated robot with a moving camera, while
’hand_eye_scara_stationary_cam’ defines a system of a SCARA robot with a stationary camera.

The sensor type is defined by the two parameters NumCameras and NumCalibObjects of create_calib_data.
If a camera with a calibration plate is used, both parameters must be set to 1. If a 3D sensor is used, both parameters
must be set to 0.

In the following, the respective calls of create_calib_data are shown for all eight combinations of the above
three categories:

Articulated robot — Camera — Stationary

create_calib_data ('hand_eye_stationary_cam', 1, 1, CalibDataID)

Articulated robot — Camera — Moving

create_calib_data ('hand_eye_moving_cam', 1, 1, CalibDataID)

Articulated robot — 3D sensor — Stationary

create_calib_data ('hand_eye_stationary_cam', 0, 0, CalibDataID)

Articulated robot — 3D sensor — Moving

create_calib_data ('hand_eye_moving_cam', 0, 0, CalibDataID)

SCARA robot — Camera — Stationary

create_calib_data ('hand_eye_scara_stationary_cam', 1, 1, CalibDataID)

8.4 Preparing the Calibration Input Data C-181

SCARA robot — Camera — Moving

create_calib_data ('hand_eye_scara_moving_cam', 1, 1, CalibDataID)

SCARA robot — 3D sensor — Stationary

create_calib_data ('hand_eye_scara_stationary_cam', 0, 0, CalibDataID)

SCARA robot — 3D sensor — Moving

create_calib_data ('hand_eye_scara_moving_cam', 0, 0, CalibDataID)

When a camera with a calibration plate is used, i.e., if the two parameters NumCameras and NumCalibObjects

of create_calib_data are both set to 1, the camera parameters and the calibration plate must be set in the
calibration data model:

set_calib_data_cam_param (CalibDataID, 0, [], StartCamParam)

set_calib_data_calib_object (CalibDataID, 0, CalTabFile)

The optimization method that results in the most accurately calibrated poses is the non-linear algorithm. It
is the method of choice and is therefore the default method used by calibrate_hand_eye. It can also be
set explicitly as follows. For further information about the optimization methods, see the documentation of
calibrate_hand_eye.

set_calib_data (CalibDataID, 'model', 'general', 'optimization_method', \

'nonlinear')

8.4.2 Poses of the Calibration Object

Camera with HALCON calibration plate
When using a camera and the HALCON calibration plate, the pose of the calibration plate is determined
in each calibration image and saved in the calibration data model for the hand-eye calibration using
find_calib_object. Please note that for the hand-eye calibration we strongly recommend to use the

!calibration plate with hexagonally arranged calibration marks (see section 3.2.3.1 on page 67). This
calibration plate is much easier to handle than the one with rectangularly arranged calibration marks because
it may be partly occluded or placed partly outside the image. Do not use the old calibration plate with rectan-
gularly arranged calibration marks and without the asymmetric pattern in one of its corners because if even
in a single calibration image the pose of the old, symmetric calibration plate is estimated wrongly because it
is rotated by more than 90 degrees, the calibration will fail!

for I := 0 to NumImages - 1 by 1

dev_set_window (WindowHandle)

dev_clear_window ()

read_image (Image, ImageNameStart + I$'02d')
dev_display (Image)

find_calib_object (Image, CalibDataID, 0, 0, I, [], [])

Camera with generic calibration object
If a different calibration plate is used, the extracted marker position can be set with
set_calib_data_observ_points. These are then used internally to determine the pose of the cal-
ibration plate. For more details on using generic calibration plates refer to section 3.2.3.2 on page
70.

3D sensor
If a generic 3D sensor is used, the observed poses are set explicitly in the calibration data model.

set_calib_data_observ_pose (CalibDataID, 0, 0, I, CalObjInCamPose)

R
ob

ot
V

is
io

n

C-182 Robot Vision

8.4.3 Poses of the Robot Tool

For each of the calibration images or observed poses, the corresponding pose of the robot must be specified. Note
that the accuracy of the poses is critical to obtain an accurate hand-eye calibration. There are two ways!
to “feed” the poses into HALCON: In many cases, you will simply read them from the robot control unit and
then enter them into your HALCON program manually. For this, you can use the HDevelop example program
%HALCONEXAMPLES%\solution_guide\3d_vision\hand_eye_create_robot_poses.hdev, which lets you
input the poses in a text window and writes them into files.

As an alternative, if the robot has a serial or socket interface, you can also send them via this connection to your
HALCON program (see the sections “System . Serial” and “System . Sockets” in the Reference Manual for more
information).

In both cases, you then convert the data into HALCON 3D poses using the operator create_pose. As described
in section 2.1.4 on page 20 (and in the Reference Manual entry for create_pose), you can specify a pose in more
than one way, because the orientation can be described by different sequences of rotations. Therefore, you must
first check which sequence is used by your robot system. In many cases, it will correspond to

Rabg = Rz(RotZ) ·Ry(RotY) ·Rx(RotX) (8.4)

If this is the case, select the value ’abg’ for the parameter OrderOfRotation of create_pose. For the inverse
order, select ’gba’.

If your robot system uses yet another sequence, you cannot use create_pose but must create a corresponding
homogeneous transformation matrix and convert it into a pose using hom_mat3d_to_pose. If, e.g., your robot
system uses the following sequence of rotations where the rotations are performed around the z-axis, then around
the y-axis, and finally again around the z-axis

Rzyz = Rz(Rl) ·Ry(Rm) ·Rz(Rr) (8.5)

the pose can be created with the following code:

hom_mat3d_identity (HomMat3DIdentity)

hom_mat3d_translate (HomMat3DIdentity, Tx, Ty, Tz, HomMat3DTranslate)

hom_mat3d_rotate_local (HomMat3DTranslate, rad(Rl), 'z', HomMat3DT_Rl)

hom_mat3d_rotate_local (HomMat3DT_Rl, rad(Rm), 'y', HomMat3DT_Rl_Rm)

hom_mat3d_rotate_local (HomMat3DT_Rl_Rm, rad(Rr), 'z', HomMat3D)

hom_mat3d_to_pose (HomMat3D, Pose)

Note that the rotation operators expect angles to be given in radians, whereas create_pose expects them in
degrees!

The example program %HALCONEXAMPLES%\solution_guide\3d_vision\

hand_eye_create_robot_poses.hdev allows you to enter poses of the three types described above. If
your robot system uses yet another sequence of rotations, you can easily extend the program by modifying (or
copying and adapting) the code for ZYZ poses.

The HDevelop example programs %HALCONEXAMPLES%\solution_guide\3d_vision\

hand_eye_movingcam_calibration.hdev and %HALCONEXAMPLES%\solution_guide\3d_vision\

hand_eye_stationarycam_calibration.hdev read the robot pose files in the loop of processing the
calibration images.

For each pose of the calibration object, the pose of the robot tool in robot base coordinates that was used for its
observation is read from file using read_pose and accumulated in the calibration data model CalibDataID.

read_pose (DataNameStart + 'robot_pose_' + I$'02d' + '.dat', ToolInBasePose)

set_calib_data (CalibDataID, 'tool', I, 'tool_in_base_pose', ToolInBasePose)

The procedure of setting the robot tool pose in the calibration data model is identical for a hand-eye system with a
moving camera and a system with a stationary camera.

8.5 Performing the Calibration C-183

8.5 Performing the Calibration

Similar to the camera calibration, the main effort lies in collecting the input data. The calibration itself is performed
with a single operator call.

calibrate_hand_eye (CalibDataID, Errors)

Of course, you should check whether the calibration was successful by looking at the output parameter Errors,
which is a measure for the accuracy of the pose parameters. It contains the pose error of the complete chain of
transformations in form of a tuple with the following four elements:

• the root-mean-square error of the translational part in meter

• the root-mean-square error of the rotational part in degree

• the maximum error of the translational part in meter

• the maximum error of the rotational part in degree

In a pose, typically, the translation is entered in meter and the rotation is entered in degree, therefore the respective
error has the same unit. The error have to be interpreted in the context of the hand-eye calibration setup, i.e., the
size of the robot and the distance between the camera and the calibration object.

Stationary camera
For a hand-eye system with a stationary camera, the pose of the robot base in camera coordinates and the
pose of the calibration object in robot tool coordinates is computed by the hand-eye calibration. These poses
can be queried from the calibration data model as follows:

get_calib_data (CalibDataID, 'camera', 0, 'base_in_cam_pose', BaseInCamPose)

get_calib_data (CalibDataID, 'calib_obj', 0, 'obj_in_tool_pose', \

ObjInToolPose)

Moving camera
For a hand-eye system with a moving camera, the pose of the robot tool in camera coordinates and the pose
of the calibration object in robot base coordinates is computed by the hand-eye calibration. These poses can
be queried from the calibration data model as follows:

get_calib_data (CalibDataID, 'camera', 0, 'tool_in_cam_pose', ToolInCamPose)

get_calib_data (CalibDataID, 'calib_obj', 0, 'obj_in_base_pose', \

CalObjInBasePose)

Typically, you then save the calibrated poses in files so that your robot vision application can read them at a later
time. The following code does so for a system with a moving camera:

write_pose (ToolInCamPose, DataNameStart + 'final_pose_cam_tool.dat')
write_pose (CalObjInBasePose, \

DataNameStart + 'final_pose_base_calplate.dat')

The example programs then visualize the calibrated poses by displaying the coordinate system of the calibration
plate in each calibration image. For this, they compute the pose of the calibration plate in camera coordinates based
on the calibrated poses.

Moving camera
For a moving camera system, this corresponds to the following code (compare equation 8.1 on page 178).

* CalibObjInCamPose = cam_H_calplate

* = cam_H_tool * tool_H_base * base_H_calplate

* = ToolInCamPose * BaseInToolPose * CalibrationPose

pose_invert (ToolInBasePose, BaseInToolPose)

pose_compose (ToolInCamPose, BaseInToolPose, BaseInCamPose)

pose_compose (BaseInCamPose, CalibObjInBasePose, CalibObjInCamPose)

R
ob

ot
V

is
io

n

C-184 Robot Vision

This code is encapsulated in a procedure, which is called in a loop over all images.

for I := 0 to NumImages - 1 by 1

read_image (Image, ImageNameStart + I$'02d')

The pose of the robot tool that was set in the calibration data model is queried and the corresponding pose
of the calibration object in the camera coordinates is computed and visualized.

get_calib_data (CalibDataID, 'tool', PoseIds[I], 'tool_in_base_pose', \

ToolInBasePose)

* Compute the pose of the calibration object relative to the camera

calc_calplate_pose_movingcam (CalObjInBasePose, ToolInCamPose, \

ToolInBasePose, CalObjInCamPose)

* Display the coordinate system

disp_3d_coord_system (WindowHandle, CamParam, CalObjInCamPose, 0.01)

endfor

Stationary camera
The corresponding procedure for a stationary camera system is listed in appendix A.6 on page 233.

An observation can be deleted using the operator remove_calib_data_observ (compare section 3.2.8 on page
75). The corresponding pose of the robot tool has to be deleted using the operator remove_calib_data. To
determine the effect of a deleted observation on the hand-eye calibration, the calibration has to be performed
again.

8.6 Determine Translation in Z Direction for SCARA Robots

This step is not required for articulated robots, but it is obligatory for SCARA robots.

When calibrating SCARA robots, it is not possible to determine the Z translation of ’obj_in_base_pose’ (moving
camera) or ’obj_in_tool_pose’ (stationary camera). To eliminate this ambiguity the Z translation is internally
set to 0.0 in these poses and the poses ’tool_in_cam_pose’ (moving camera) and ’base_in_cam_pose’ (stationary
camera), respectively, are calculated accordingly. It is necessary to determine the true translation in Z after the
calibration by moving the robot to a pose of known height in the camera coordinate system. For this, the following
approach can be applied:

Moving camera
The calibration plate is placed at an arbitrary position. The robot is then moved such that the camera can
observe the calibration plate. Now, an image of the calibration plate is acquired and the current robot pose
is queried (ToolInBasePose1). From the image, the pose of the calibration plate in the camera coordinate
system can be determined (ObjInCamPose1). Afterwards, the tool of the robot is manually moved to the
origin of the calibration plate and the robot pose is queried again (ToolInBasePose2). These three poses and
the result of the calibration (ToolInCamPosePre) can be used to fix the Z ambiguity by using the following
lines of code:

pose_invert (ToolInCamPosePre, CamInToolPose)

pose_compose (CamInToolPose, ObjInCamPose1, ObjInToolPose1)

pose_invert (ToolInBasePose1, BaseInToolPose1)

pose_compose (BaseInToolPose1, ToolInBasePose2, Tool2InTool1Pose)

ZCorrection := ObjInToolPose1[2] - Tool2InTool1Pose[2]

set_origin_pose (ToolInCamPosePre, 0, 0, ZCorrection, ToolInCamPose)

Stationary camera
A calibration plate (that is not attached to the robot) is placed at an arbitrary position such that it can be
observed by the camera. The pose of the calibration plate must then be determined in the camera coordinate
system (ObjInCamPose). Afterwards the tool of the robot is manually moved to the origin of the calibra-
tion plate and the robot pose is queried (ToolInBasePose). The two poses and the result of the calibration
(BaseInCamPosePre) can be used to fix the Z ambiguity by using the following lines of code:

8.7 Using the Calibration Data C-185

pose_invert (BaseInCamPosePre, CamInBasePose)

pose_compose (CamInBasePose, ObjInCamPose, ObjInBasePose)

ZCorrection := ObjInBasePose[2] - ToolInBasePose[2]

set_origin_pose (BaseInCamPosePre, 0, 0, ZCorrection, BaseInCamPose)

8.7 Using the Calibration Data

Typically, the result of the hand-eye calibration is used to transform the results of machine vision from camera
coordinates into robot base coordinates (camHobj → baseHobj) to generate the appropriate robot commands,
e.g., to grasp an object whose position has been determined in an image as in the application described in sec-
tion 8.7.3 on page 187.

Stationary camera
For a stationary camera, this transformation corresponds to the following equation written using homoge-
neous transformation matrices (compare figure 8.5 on page 178):

baseHobj = baseHcam · camHobj (8.6)

This equation can also be implemented using the corresponding 3D HALCON poses.

pose_invert (BaseInCamPose, CamInBasePose)

pose_compose (CamInBasePose, ObjInCamPose, ObjInBasePose)

Moving camera
For a moving camera system, the equation also contains the pose of the robot tool when acquiring the image
of the object baseHtool(acq. pos.) (compare figure 8.4 on page 178):

baseHobj = baseHtool(acq. pos.) · toolHcam · camHobj

(8.7)

This equation can also be implemented by composing the corresponding 3D HALCON poses.

pose_invert (ToolInCamPose, CamInToolPose)

pose_compose (ToolInBasePose, CamInToolPose, CamInBasePose)

pose_compose (CamInBasePose, ObjInCamPose, ObjInBasePose)

8.7.1 Using the Hand-Eye Calibration for Grasping (3D Alignment)

Grasping an object corresponds to a very simple equation that says “move the robot gripper to the pose of the
object” (“grasping pose”). This is also called 3D alignment.

Note that if the tool coordinate system used during hand-eye calibration is not placed at the gripper (tool center
point), the equation also contains the transformation between tool and gripper coordinate system. This trans-
formation cannot be calibrated with the hand-eye calibration but must be measured or taken from the CAD
model or technical drawing of the gripper. Additionally, the procedure calibrate_robot_touching_point

is available - have a look at the example program %HALCONEXAMPLES%\hdevelop\Calibration\Hand-Eye\

calibrate_hand_eye_stationary_cam_approx.hdev to see how to use it. To grasp an object, the gripper
pose in robot base coordinates has to be identical to the pose of the object in robot base coordinates.

tool = gripper: baseHtool(grip. pos.) = baseHobj (8.8)

tool 6= gripper: baseHtool(grip. pos.) · toolHgripper = baseHobj

baseHtool(grip. pos.) = baseHobj ·(toolHgripper)
-1

R
ob

ot
V

is
io

n

C-186 Robot Vision

Stationary camera
If we replace baseHobj according to equation 8.6, we get the “grasping equation” for a stationary camera:

baseHtool(grip. pos.) = (baseHcam) · camHobj

[
·(toolHgripper)

-1]
(8.9)

The notation
[
·(toolHgripper)

-1]
indicates that this part is only necessary if the tool coordinate system is not

identical with the gripper coordinate system.

Accordingly using the HALCON poses, the pose of the robot tool in robot base coordinates (ToolInBasePose)
that is needed for grasping an object is computed. When the gripper grasps an object GripperInCamPose has
to equal:

pose_invert(BaseInCamPose, CamInBasePose)

pose_compose(CamInBasePose,ObjInCamPose, GripperInBasePose)

pose_invert (GripperInToolPose, ToolInGripper)

pose_compose (GripperInBasePose,ToolInGripper,ToolInBasePose)

Moving camera
For a moving camera, baseHobj is replaced by equation 8.7 on page 185 resulting in the following equation:

baseHtool(grip. pos.) = baseHtool(acq. pos.) · (toolHcam) · camHobj

[
·(toolHgripper)

-1]
(8.10)

The notation
[
·(toolHgripper)

-1]
indicates that this part is only necessary if the tool coordinate system is not

identical with the gripper coordinate system.

Using the HALCON poses, the above equation appears as follows:

pose_invert(ToolInCamPose, CamInToolPose)

pose_compose(ToolInBasePose_acq,CamInToolPose, CamInBasePose)

pose_invert (GripperInToolPose, ToolInGripper)

pose_compose (CamInBasePose,ToolInGripper,ToolInBasePose_grip)

8.7.2 How to Get the 3D Pose of the Object

The 3D pose of the object in camera coordinates (camHobj) or more general in sensor coordinates can stem from
different sources:

• With a binocular stereo system or a generic 3D sensor, you can determine the 3D pose of unknown objects
directly. More information on binocular stereo vision is provided in (see chapter 5 on page 117).

• For single camera systems, HALCON provides multiple methods. The most powerful one is shape-
based 3D Matching (see section 4.2 on page 95 or the Solution Guide I, chapter 11 on page 101),
which performs a full object recognition, i.e., it not only estimates the pose but first locates the
object in the image. If only one, planar side of the object is visible, fast alternatives are the cali-
brated perspective deformable matching (section 4.6 on page 114) and the calibrated descriptor-based
matching (section 4.7 on page 114). Additionally, you might use simple shape-based 2D matching,
as demonstrated in the examples %HALCONEXAMPLES%\hdevelop\Applications\Robot-Vision\

pick_and_place_with_2d_matching_moving_cam.hdev and %HALCONEXAMPLES%\hdevelop\

Applications\Robot-Vision\pick_and_place_with_2d_matching_stationary_cam.hdev.

• If a full object recognition is not necessary, you can use pose estimation to determine the 3D pose of known
objects (see section 8.7.3 for an example application and chapter 4 on page 91 for more details on pose
estimation).

• Finally, you can determine the 3D coordinates of unknown objects if object points lie in a known plane
(see section 8.7.3 for an example application and section 3.3 on page 76 for more details on determining 3D
points in a known plane).

Please note that if you want to use the 3D pose for grasping the object, the extracted pose, in particular the
orientation, must be identical to the pose of the gripper at the grasping position.

8.7 Using the Calibration Data C-187

a) b)

base

tool

gripper camera
tool

camera

calibration plate

z

x

y

z

x

y

z

x

y
x

y
z

y

x
z

z

y x

z

y x

Figure 8.6: Example hand-eye system with a stationary camera: coordinate systems (a) of robot and camera, (b)
with calibration plate.

b)a)

G1 & G2: grasping points

C1 − C4: corner points

grasping pose

reference coordinate system

Figure 8.7: (a) Determining the 3D pose for grasping a nut; (b) robot tool at grasping pose.

8.7.3 Example Application with a Stationary Camera: Grasping a Nut

This section describes an example application realized with the hand-eye system depicted in fig-
ure 8.6. The task is to localize a nut and determine a suitable grasping pose for the robot tool
(see figure 8.7). The HDevelop example program %HALCONEXAMPLES%\solution_guide\3d_vision\

hand_eye_stationarycam_grasp_nut.hdev performs the machine vision part and transforms the resulting
pose into robot coordinates using the calibration data determined with %HALCONEXAMPLES%\solution_guide\

3d_vision\hand_eye_stationarycam_calibration.hdev as described in the previous sections. As you will
see, using the calibration data is the shortest part of the program, its main part is devoted to machine vision.

Step 1: Read calibration data

First, the calibrated poses are read from files; for later computations, the poses are converted into homogeneous
transformation matrices.

read_cam_par (DataNameStart + 'final_campar.dat', CamParam)

read_pose (DataNameStart + 'final_pose_cam_base.dat', BaseInCamPose)

pose_to_hom_mat3d (BaseInCamPose, cam_H_base)

read_pose (DataNameStart + 'final_pose_tool_calplate.dat', \

CalplateInToolPose)

pose_to_hom_mat3d (CalplateInToolPose, tool_H_calplate)

R
ob

ot
V

is
io

n

C-188 Robot Vision

In the used hand-eye system, the tool coordinate system used in the calibration process is located at the mounting
point of the tool; therefore, an additional coordinate system is needed between the fingers of the gripper (see
figure 8.6a). Its pose in tool coordinates is also read from file.

read_pose (DataNameStart + 'pose_tool_gripper.dat', GripperInToolPose)

pose_to_hom_mat3d (GripperInToolPose, tool_H_gripper)

Step 2: Define reference coordinate system

Now, a reference coordinate system is defined based on one of the calibration images. In this image, the calibration
plate has been placed into the plane on top of the nut. This allows to determine the 3D coordinates of extracted
image points on the nut with a single camera and without knowing the dimensions of the nut. The code for defining
the reference coordinate system is contained in a procedure, which is listed in appendix A.7 on page 234.

define_reference_coord_system (ImageNameStart + 'calib3cm_00', CamParam, \

CalplateFile, WindowHandle, PoseRef)

pose_to_hom_mat3d (PoseRef, cam_H_ref)

Step 3: Extract grasping points on the nut

The following code extracts grasping points on two opposite sides of the nut. The nut is found with simple blob
analysis; its boundary is converted into XLD contours.

threshold (Image, BrightRegion, 60, 255)

connection (BrightRegion, BrightRegions)

select_shape (BrightRegions, Nut, 'area', 'and', 500, 99999)

fill_up (Nut, NutFilled)

gen_contour_region_xld (NutFilled, NutContours, 'border')

The contours are then processed to find long, parallel straight line segments; their corners are accumulated in
tuples.

segment_contours_xld (NutContours, LineSegments, 'lines', 5, 4, 2)

fit_line_contour_xld (LineSegments, 'tukey', -1, 0, 5, 2, RowBegin, \

ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)

gen_empty_obj (Lines)

for I := 0 to |RowBegin| - 1 by 1

gen_contour_polygon_xld (Contour, [RowBegin[I],RowEnd[I]], [ColBegin[I], \

ColEnd[I]])

concat_obj (Lines, Contour, Lines)

endfor

gen_polygons_xld (Lines, Polygon, 'ramer', 2)

gen_parallels_xld (Polygon, ParallelLines, 50, 100, rad(10), 'true')
get_parallels_xld (ParallelLines, Row1, Col1, Length1, Phi1, Row2, Col2, \

Length2, Phi2)

CornersRow := [Row1[0],Row1[1],Row2[0],Row2[1]]

CornersCol := [Col1[0],Col1[1],Col2[0],Col2[1]]

Step 4: Determine the grasping pose in camera coordinates

The grasping pose is calculated in 3D coordinates. For this, the 3D coordinates of the corner points in the refer-
ence coordinate system are determined using the operator image_points_to_world_plane. The origin of the
grasping pose lies in the middle of the corners.

image_points_to_world_plane (CamParam, PoseRef, CornersRow, CornersCol, 'm', \

CornersX_ref, CornersY_ref)

CenterPointX_ref := sum(CornersX_ref) * 0.25

CenterPointY_ref := sum(CornersY_ref) * 0.25

The grasping pose is oriented almost like the reference coordinate system, only rotated around the z-axis so that it
is identical to the gripper coordinate system, i.e., so that the gripper “fingers” are parallel to the sides of the nut.
To calculate the rotation angle, first the grasping points in the middle of the sides are determined. Their angle can
directly be used as the rotation angle.

8.7 Using the Calibration Data C-189

GraspPointsX_ref := [(CornersX_ref[0] + CornersX_ref[1]) * 0.5, \

(CornersX_ref[2] + CornersX_ref[3]) * 0.5]

GraspPointsY_ref := [(CornersY_ref[0] + CornersY_ref[1]) * 0.5, \

(CornersY_ref[2] + CornersY_ref[3]) * 0.5]

GraspPhiZ_ref := atan((GraspPointsY_ref[1] - GraspPointsY_ref[0]) / \

(GraspPointsX_ref[1] - GraspPointsX_ref[0]))

With the origin and rotation angle, the grasping pose is first determined in the reference coordinate system and
then transformed into camera coordinates.

hom_mat3d_identity (HomMat3DIdentity)

hom_mat3d_rotate (HomMat3DIdentity, GraspPhiZ_ref, 'z', 0, 0, 0, \

HomMat3D_RZ_Phi)

hom_mat3d_translate (HomMat3D_RZ_Phi, CenterPointX_ref, CenterPointY_ref, 0, \

ref_H_grasp)

hom_mat3d_compose (cam_H_ref, ref_H_grasp, cam_H_grasp)

Alternatively, the example also shows how to calculate the grasping pose using pose estimation (see chapter 4 on
page 91 for a detailed description). This method can be used when points on the object are known. In the example,
we specify the 3D coordinates of the corners of the nut.

NX := [0.009, -0.009, -0.009, 0.009]

NY := [0.009, 0.009, -0.009, -0.009]

The grasping pose is then calculated by simply calling the operator vector_to_pose. Before, however, the image
coordinates of the corners must be sorted such that the first one lies close to the x-axis of the reference coordinate
system. Otherwise, the orientation of the reference coordinate system would differ too much from the grasping
pose and the pose estimation would fail.

sort_corner_points (CornersRow, CornersCol, WindowHandle, NRow, NCol)

vector_to_pose (NX, NY, NZ, NRow, NCol, CamParam, 'iterative', 'error', \

PoseCamNut, Quality)

disp_3d_coord_system (WindowHandle, CamParam, GripperInCamPose, 0.01)

The result of both methods is displayed in figure 8.7a on page 187.

Step 5: Transform the grasping pose in robot coordinates

Now comes the moment to use the results of the hand-eye calibration: The grasping pose is transformed into robot
coordinates with the formula shown in equation 8.9 on page 186.

hom_mat3d_invert (cam_H_base, base_H_cam)

hom_mat3d_compose (base_H_cam, cam_H_grasp, base_H_grasp)

As already mentioned, the tool coordinate system used in the calibration process is placed at the mounting point
of the tool, not between the fingers of the gripper. Thus, the pose of the tool in gripper coordinates must be added
to the chain of transformations to obtain the pose of the tool in base coordinates.

hom_mat3d_invert (tool_H_gripper, gripper_H_tool)

hom_mat3d_compose (base_H_grasp, gripper_H_tool, base_H_tool)

Step 6: Transform pose type

Finally, the pose is converted into the type used by the robot controller.

hom_mat3d_to_pose (base_H_tool, PoseRobotGrasp)

convert_pose_type (PoseRobotGrasp, 'Rp+T', 'abg', 'point', \

PoseRobotGrasp_ZYX)

Figure 8.7b on page 187 shows the robot at the grasping pose.

R
ob

ot
V

is
io

n

C-190 Robot Vision

Calibrated Mosaicking C-191

Chapter 9

Calibrated Mosaicking

Some objects are too large to be covered by one single image. Multiple images that cover different parts of the
object must be taken in such cases. You can measure precisely across the different images if the cameras are
calibrated and their external parameters are known with respect to one common world coordinate system.

It is even possible to merge the individual images into one larger image that covers the whole object. This is done
by rectifying the individual images with respect to the same measurement plane (see section 3.4.1 on page 80). In
the resulting image, you can measure directly in world coordinates.

Note that the 3D coordinates of objects are derived based on the same principle as described in chapter 3 on page
59, i.e., a measurement plane that coincides with the object surface must be defined. Although two or more cameras
are used, this is no stereo approach. For more information on 3D vision with a binocular stereo system, please
refer to chapter 5 on page 117.

If the resulting image is not intended to serve for high-precision measurements in world coordinates, you can
generate it using the mosaicking approach described in chapter 10 on page 205. With this approach, it is not
necessary to calibrate the cameras.

A setup for generating a high-precision mosaic image from two cameras is shown in figure 9.1. The cameras are
mounted such that the resulting pair of images has a small overlap. The cameras are first calibrated and then the
images are merged together into one larger image. All further explanations within this section refer to such a
two-camera setup.

Typically, the following two steps must be carried out:

1. Determination of the internal and external camera parameters, using one calibration object, to facilitate that
the relation between the cameras can be determined.

2. Merge the images into one larger image that covers the whole object.

In this chapter, two approaches, both using a two-camera setup, are described:

The first approach demonstrates, how highly accurate mosaicking can be easily performed after calibrating your
cameras simultaneously with a single standard HALCON calibration plate with hexagonally arranged marks.
Thereby, in the calibration step, each camera has to be able to obtain adequate images of the calibration plate
at the same time. You can also refer to the HDevelop example program %HALCONEXAMPLES%\hdevelop\Tools\

Mosaicking\two_camera_calibrated_mosaicking.hdev.

The second approach, which is used in the HDevelop example program %HALCONEXAMPLES%\solution_guide\

3d_vision\two_camera_calibration.hdev, shows a calibration setup for cases, where one calibration plate
is not sufficient. Thus, a calibration object consisting of multiple calibration plates, whose relative positions are
exactly known, is needed.

9.1 Setup

Two or more cameras must be mounted on a stable platform such that each image covers a part of the whole scene.
The cameras can have an arbitrary orientation, i.e., it is not necessary that they are looking parallel or perpendicular
onto the object surface.

M
os

ai
ck

in
g

I

C-192 Calibrated Mosaicking

Calibration

Figure 9.1: Two-camera setup.

To setup focus, illumination, and overlap appropriately, use a big reference object that covers all fields of view.
To permit that the images are merged into one larger image, they must have some overlap (see figure 9.2 for an
example). The overlapping area can be even smaller than depicted in figure 9.2, since the overlap is only necessary
to ensure that there are no gaps in the resulting combined image.

{ {

Overlapping area

Figure 9.2: Overlapping images.

9.2 Approach Using a Single Calibration Plate C-193

9.2 Approach Using a Single Calibration Plate

For the first approach, the calibration is performed using a series of images of a single standard HALCON calibra-
tion plate with hexagonally arranged marks. Thereby, internal and external camera parameters are determined at
once. This approach is quite straightforward, however it only works, if all cameras of a setup can acquire adequate
images of the calibration plate simultaneously. Usually this is only the case for a two-camera setup.

The plane, defined by a suitable pose of the calibration plate, that was received during the calibration step, can be
used as the rectification plane onto which images from both cameras can then be mapped before they are stitched
together.

9.2.1 Calibration

When using a calibration plate with hexagonally arranged marks, the calibration images do not need to contain the
entire calibration plate (figure 9.3). Therefore, the following mosaicking approach is suitable, when having a setup
where convenient calibration images can be acquired simultaneously by all cameras. See the chapter reference of
“Calibration” to get information on how to take a suitable set of calibration images. Both internal and external
camera parameters can be determined within this setup.

After setting initial values for the internal camera parameters with gen_cam_par_area_scan_division, a cali-
bration data model is created using create_calib_data.

gen_cam_par_area_scan_division (0.012, 0, 4.4e-6, 4.4e-6, WidthCam1 / 2, \

HeightCam1 / 2, WidthCam1, HeightCam1, \

StartCamParam1)

gen_cam_par_area_scan_division (0.012, 0, 4.4e-6, 4.4e-6, WidthCam2 / 2, \

HeightCam2 / 2, WidthCam2, HeightCam2, \

StartCamParam2)

create_calib_data ('calibration_object', 2, 1, CalibDataID)

set_calib_data_cam_param (CalibDataID, 0, [], StartCamParam1)

set_calib_data_cam_param (CalibDataID, 1, [], StartCamParam2)

set_calib_data_calib_object (CalibDataID, 0, 'calplate_160mm.cpd')

To achieve high accuracy, ten calibration images are taken by each camera. A simultaneous acquisition of the
image pairs ensures, that the calibration plate is in the exact same position referring to world coordinates for both
calibration images.

Figure 9.3: Pair of calibration images of the two-camera setup with hexagonally arranged marks.

With find_calib_object, the marks of the calibration plate are located and the extracted information is accu-
mulated in the calibration data model for all calibration images. Using calibrate_cameras the two cameras can
be calibrated simultaneously.

M
os

ai
ck

in
g

I

C-194 Calibrated Mosaicking

for I := 0 to NumCalibImages - 1 by 1

read_image (ImageCam1, ImagePath + '/calib_cam_1_' + (I + 1)$'02d')
read_image (ImageCam2, ImagePath + '/calib_cam_2_' + (I + 1)$'02d')
find_calib_object (ImageCam1, CalibDataID, 0, 0, I, [], [])

find_calib_object (ImageCam2, CalibDataID, 1, 0, I, [], [])

endfor

calibrate_cameras (CalibDataID, Errors)

9.2.2 Mosaicking

After the calibration of the cameras is finished successfully, the setup is now used to acquire images of an object
(figure 9.4). In order to stitch images of the two cameras together, they need to be projected into a rectification

Figure 9.4: Pair of object images taken by the two camera setup.

plane. Therefore, a reference pose of the calibration plate (while positioned in the same plane as the object)
with respect to the first camera is used. In order to take the thickness of the calibration plate into account, the
z-component of the pose is adjusted by 4mm. Thus, the rectification plane corresponds to the measurement plane.
Then, the relative pose of the second camera with respect to the first camera is inverted and combined with the
absolute pose of the first camera in order to get its absolute pose.

get_calib_data (CalibDataID, 'calib_obj_pose', [0, 0], 'pose', Pose1)

set_origin_pose (Pose1, 0, 0, 0.004, Pose1)

get_calib_data (CalibDataID, 'camera', 1, 'pose', RelPose2)

pose_invert (RelPose2, RelPose2Inverted)

pose_compose (RelPose2Inverted, Pose1, Pose2)

Now, after the poses of the rectification plane and the cameras are known, a mapping for the object images is
needed. Therefore, the camera poses have to be adjusted by the particular thickness of the respective object.
Additionally the x- and y-coordinates are adjusted, so the origin of the rectification plane approximately matches
the origin of the result image, hence the object will be contained in it entirely. The mappings are then generated
by the operator gen_image_to_world_plane_map.

set_origin_pose (Pose1, -0.14, -0.07, HeightCorrections[OIdx], WorldPose1)

set_origin_pose (Pose2, -0.14, -0.07, HeightCorrections[OIdx], WorldPose2)

gen_image_to_world_plane_map (Map1, CamParam1, WorldPose1, WidthCam1, \

HeightCam1, TargetWidth, TargetHeight, Scale, \

'bilinear')
gen_image_to_world_plane_map (Map2, CamParam2, WorldPose2, WidthCam2, \

HeightCam2, TargetWidth, TargetHeight, Scale, \

'bilinear')

9.3 Approach Using Multiple Calibration Plates C-195

The mappings can be applied with the operator map_image, so both images are projected onto the rectification
plane accordingly (see figure 9.5). The mapped images are slightly rotated, as the calibration plate in the image,
chosen as reference image in the calibration, was rotated in regard to the image edges as well.

map_image (ImageCam1, Map1, ImageWorld1)

map_image (ImageCam2, Map2, ImageWorld2)

Figure 9.5: Projection of the two images onto the rectification plane.

To get a single result image, the mapped images need to be stitched together. When assembling images of a
multi-view camera setup, you need to pay attention to overlapping image parts and the image domains.

get_domain (ImageWorld1, Domain1)

get_domain (ImageWorld2, Domain2)

intersection (Domain1, Domain2, RegionIntersection)

paint_region (RegionIntersection, ImageWorld1, ImageWorld1Blackended, 0, \

'fill')
full_domain (ImageWorld1Blackended, ImagePart1)

full_domain (ImageWorld2, ImagePart2)

add_image (ImagePart1, ImagePart2, ImageFull, 1, 0)

By adding the two images, gray values of the overlapping parts are added up. Therefore, in one of the images, the
color value of intersecting pixels is set to 0 by using paint_region on the respective image part beforehand. The
domain of both individual images is extended, such that it is identical.

The final step is to remove the black borders. Therefore, the full image is rotated so that a rectangle, created by
the operator gen_rectangle1, can be fitted in to define the new domain of the image with reduce_domain. This
domain is eventually cropped with crop_domain and the image is oriented the favored way by flipping it twice
with mirror_image (see final result in figure 9.6).

rotate_image (ImageFull, ImageRotated, 12, 'constant')
gen_rectangle1 (RectangleDomain, Borders[0], Borders[1], Borders[2], \

Borders[3])

reduce_domain (ImageRotated, RectangleDomain, ImageReduced)

crop_domain (ImageReduced, ImageReduced)

mirror_image (ImageReduced, ImageReduced, 'row')
mirror_image (ImageReduced, ImageResult, 'column')

9.3 Approach Using Multiple Calibration Plates

The second mosaicking approach is more complex, compared to the first one, but allows you to cover a bigger
area, as not all cameras need to have the same calibration plate in their field of view. In fact, in order to perform

M
os

ai
ck

in
g

I

C-196 Calibrated Mosaicking

Figure 9.6: Final result of the mosaicking.

a measurement task, the images acquired by the cameras do not necessarily have to overlap. Instead of a single
calibration plate, a calibration object consisting of multiple calibration plates is used. Thereby, the relative position
of the plates to each other must be known very precisely. Internal and external camera parameters are therefore
determined separately.

The idea for this approach is to rectify the two images in such a way, that they fit exactly next to each other. This is
first done with images showing the calibration plates in order to create the rectification maps for this setup. Those
mappings can then be applied to further image pairs.

9.3.1 Calibration

The calibration of the images can be broken down into two separate steps.

The first step is to determine the internal camera parameters for each of the cameras in use. This can be done for
each camera independently, as described in section 3.2 on page 61.

The second step is to determine the external camera parameters for all cameras. Because the final coordinates
should refer to one world coordinate system for all images, a big calibration object that appears in all images has to
be used. For calibration plates with rectangularly arranged marks, which must be completely visible in the image,
we propose to use a calibration object like the one displayed in figure 9.7, which consists of as many calibration
plates as the number of cameras that are used.

For the determination of the external camera parameters, it is sufficient to use one calibration image from each
camera only. Note that the calibration object must not be moved in between the acquisition of the individual
images. Ideally, the images are acquired simultaneously. The pose of the calibration plates relative to the cam-
eras is then extracted using an initialized calibration data model and the operators find_calib_object and
get_calib_data_observ_points.

CaltabName := 'caltab_30mm.descr'
create_calib_data ('calibration_object', 2, 1, CalibDataID)

set_calib_data_calib_object (CalibDataID, 0, CaltabName)

set_calib_data_cam_param (CalibDataID, 0, [], CamParam1)

set_calib_data_cam_param (CalibDataID, 1, [], CamParam2)

*

* Find and display the calibration plate in the images.

find_calib_object (Image1, CalibDataID, 0, 0, 0, [], [])

get_calib_data_observ_points (CalibDataID, 0, 0, 0, RowCoord1, ColumnCoord1, \

Index1, Pose1)

*

find_calib_object (Image2, CalibDataID, 1, 0, 0, [], [])

get_calib_data_observ_points (CalibDataID, 1, 0, 0, RowCoord2, ColumnCoord2, \

Index2, Pose2)

9.3 Approach Using Multiple Calibration Plates C-197

Here, calibration plates with rectangularly arranged marks are used. The calibration is nevertheless easy if standard
HALCON calibration plates mounted on some kind of carrier plate are used such that in each image one calibration
plate is completely visible. An example for such a calibration object for a two-camera setup is given in figure 9.7.
The respective calibration images for the determination of the external camera parameters are shown in figure 9.8.
Note that the relative position of the calibration plates with respect to each other must be known precisely. This
can be done with the pose estimation described in chapter 4 on page 91.

Note also that only the relative position of the calibration marks among each other shows the high accuracy stated
in section 3.2.3.1 on page 67 but not the borders of the calibration plate. The rows of calibration marks may be
slanted with respect to the border of the calibration plate and even the distance of the calibration marks from the
border of the calibration plate may vary. Therefore, aligning the calibration plates along their boundaries may
result in a shift in x- and y-direction with respect to the coordinate system of the calibration plate in its initial
position.

Figure 9.7: Calibration object for two-camera setup.

Figure 9.8: Calibration images for two-camera setup.

9.3.2 Merging the Individual Images into One Larger Image

At first, the individual images must be rectified, i.e., transformed so that they exactly fit together. This can be
achieved by using the operators gen_image_to_world_plane_map and map_image. Then, the mosaic image
can be generated by the operator tile_images, which tiles multiple images into one larger image. These steps
are visualized in figure 9.9.

The operators gen_image_to_world_plane_map and map_image are described in section 3.4.1 on page 80. In
the following, we will only discuss the problem of defining the appropriate image detail, i.e., the position of the
upper left corner and the size of the rectified images. Again, the description is based on the two-camera setup.

9.3.2.1 Definition of the Rectification of the First Image

For the first (here: left) image, the determination of the necessary shift of the pose is straightforward. You can
define the upper left corner of the rectified image in image coordinates, e.g., interactively or, as in the example
program, based on a preselected border width.

M
os

ai
ck

in
g

I

C-198 Calibrated Mosaicking

map_image map_image

tile_images

Figure 9.9: Image rectification and tiling.

UpperRow := HeightImage1 * BorderInPercent / 100.0

LeftColumn := WidthImage1 * BorderInPercent / 100.0

Then, this point must be transformed into world coordinates.

image_points_to_world_plane (CamParam1, Pose1, UpperRow, LeftColumn, 'm', \

LeftX, UpperY)

The resulting coordinates can be used directly, together with the shift that compensates the thickness of the cal-
ibration plate (see section 3.2.7.1 on page 73) to modify the origin of the world coordinate system in the left
image.

set_origin_pose (Pose1, LeftX, UpperY, DiffHeight, PoseNewOrigin1)

This means that we shift the origin of the world coordinate system from the origin of the calibration plate to the
position that defines the upper left corner of the rectified image (figure 9.10).

The size of the rectified image, i.e., its width and height, can be determined from points originally defined in image
coordinates, too. In addition, the desired pixel size of the rectified image must be specified.

PixelSize := 0.0001

9.3 Approach Using Multiple Calibration Plates C-199

Rectified image 1
Image 1 Image 2

Figure 9.10: Definition of the upper left corner of the first rectified image.

For the determination of the height of the rectified image we need to define a point that lies near the lower border
of the first image.

LowerRow := HeightImage1 * (100 - BorderInPercent) / 100.0

Again, this point must be transformed into the world coordinate system.

image_points_to_world_plane (CamParam1, Pose1, LowerRow, LeftColumn, 'm', \

X1, LowerY)

The height can be determined as the vertical distance between the upper left point and the point near the lower
image border, expressed in pixels of the rectified image.

HeightRect := int((LowerY - UpperY) / PixelSize)

Analogously, the width can be determined from a point that lies in the overlapping area of the two images, i.e.,
near the right border of the first image.

RightColumn := WidthImage1 * (100 - OverlapInPercent / 2.0) / 100.0

image_points_to_world_plane (CamParam1, Pose1, UpperRow, RightColumn, 'm', \

RightX, Y1)

WidthRect := int((RightX - LeftX) / PixelSize)

Note that the above described definitions of the image points, from which the upper left corner and the size of
the rectified image are derived, assume that the x- and y-axes of the world coordinate system are approximately
aligned to the column- and row-axes of the first image. This can be achieved by placing the calibration plate in the
first image approximately aligned with the image borders. Otherwise, the distances between the above mentioned
points make no sense and the upper left corner and the size of the rectified image must be determined in a manner
that is adapted for the configuration at hand.

With the shifted pose and the size of the rectified image, the rectification map for the first image can be derived.

gen_image_to_world_plane_map (MapSingle1, CamParam1, PoseNewOrigin1, Width, \

Height, WidthRect, HeightRect, PixelSize, \

'bilinear')

M
os

ai
ck

in
g

I

C-200 Calibrated Mosaicking

9.3.2.2 Definition of the Rectification of the Second Image

The second image must be rectified such that it fits exactly to the right of the first rectified image. This means
that the upper left corner of the second rectified image must be identical with the upper right corner of the first
rectified image. Therefore, we need to know the coordinates of the upper right corner of the first rectified image in
the coordinate system that is defined by the calibration plate in the second image.

First, we express the upper right corner of the first rectified image in the world coordinate system that is defined by
the calibration plate in the first image. It can be determined by a transformation from the origin into the upper left
corner of the first rectified image (a translation in the example program) followed by a translation along the upper
border of the first rectified image. Together with the shift that compensates the thickness of the calibration plate,
this transformation is represented by the homogeneous transformation matrix cp1Hur1 (see figure 9.11), which
can be defined in HDevelop by:

hom_mat3d_translate_local (HomMat3DIdentity, LeftX + PixelSize * WidthRect, \

UpperY, DiffHeight, cp1Hur1)

cp1
H ur1

Rectified image 1
Image 1

Rectified image 2

Image 2

Figure 9.11: Definition of the upper right corner of the first rectified image.

Then, we need the transformation between the two calibration plates of the calibration object. The homogeneous
transformation matrix cp1Hcp2 describes how the world coordinate system defined by the calibration plate in the
first image is transformed into the world coordinate system defined by the calibration plate in the second image
(figure 9.12). This transformation must be known beforehand from a precise measurement of the calibration object.

From these two transformations, it is easy to derive the transformation that transforms the world coordinate system
of the second image such that its origin lies in the upper left corner of the second rectified image. For this, the two
transformations have to be combined appropriately (see figure 9.13):

cp2Hul2 = cp2Hcp1 · cp1Hur1 (9.1)
= (cp1Hcp2)−1 · cp1Hur1 (9.2)

This can be implemented in HDevelop as follows:

hom_mat3d_invert (cp1Hcp2, cp2Hcp1)

hom_mat3d_compose (cp2Hcp1, cp1Hur1, cp2Hul2)

9.3 Approach Using Multiple Calibration Plates C-201

cp1
cp2H

Rectified image 1
Image 1

Rectified image 2

Image 2

Figure 9.12: Transformation between the two world coordinate systems, each defined by the respective calibration
plate.

cp2
ul2H

cp2
cp1H

cp1
H ur1

Rectified image 1
Image 1

Rectified image 2

Image 2

Figure 9.13: Definition of the upper left corner of the second rectified image.

With this, the pose of the calibration plate in the second image can be modified such that the origin of the world
coordinate system lies in the upper left corner of the second rectified image.

pose_to_hom_mat3d (Pose2, cam2Hcp2)

hom_mat3d_compose (cam2Hcp2, cp2Hul2, cam2Hul2)

hom_mat3d_to_pose (cam2Hul2, PoseNewOrigin2)

With the resulting new pose and the size of the rectified image, which can be the same as for the first rectified
image, the rectification map for the second image can be derived.

M
os

ai
ck

in
g

I

C-202 Calibrated Mosaicking

gen_image_to_world_plane_map (MapSingle2, CamParam2, PoseNewOrigin2, Width, \

Height, WidthRect, HeightRect, PixelSize, \

'bilinear')

9.3.2.3 Rectification of the Images

Once the rectification maps are created, every image pair from the two-camera setup can be rectified and tiled
very efficiently. The resulting mosaic image consists of the two rectified images and covers a part as indicated in
figure 9.14.

Mosaic image
Image 1

Image 2

Figure 9.14: The position of the final mosaic image.

The rectification is carried out by the operator map_image.

map_image (Image1, MapSingle1, RectifiedImage1)

map_image (Image2, MapSingle2, RectifiedImage2)

This transforms the two images displayed in figure 9.15, into the two rectified images that are shown in figure 9.16.

Figure 9.15: Two test images acquired with the two-camera setup.

9.3 Approach Using Multiple Calibration Plates C-203

Figure 9.16: Rectified images.

As a preparation for the tiling, the rectified images must be concatenated into one tuple, which then contains both
images.

concat_obj (RectifiedImage1, RectifiedImage2, Concat)

Then the two images can be tiled.

tile_images (Concat, Combined, 2, 'vertical')

The resulting mosaic image is displayed in figure 9.17.

Figure 9.17: Mosaic image.

M
os

ai
ck

in
g

I

C-204 Calibrated Mosaicking

Uncalibrated Mosaicking C-205

Chapter 10

Uncalibrated Mosaicking

If you need an image of a large object, but the field of view of the camera does not allow to cover the entire object
with the desired resolution, you can use image mosaicking to generate a large image of the entire object from a
sequence of overlapping images of parts of the object.

An example for such an application is given in figure 10.1. On the left side, six separate images are displayed
stacked upon each other. On the right side, the mosaic image generated from the six separate images is shown.
Note that the folds visible in the image do not result from the mosaicking. They are due to some degradations on
the PCB, which can be seen already in the separate images.

The mosaicking approach described in this section is designed for applications where it is not necessary to achieve
the high-precision mosaic images as described in chapter 9 on page 191. The advantages compared to this approach
are that no camera calibration is necessary and that the individual images can be arranged automatically.

The example program %HALCONEXAMPLES%\solution_guide\3d_vision\mosaicking.hdev generates the
mosaic image displayed in figure 10.7 on page 210. First, the images are read from file and collected in one
tuple.

gen_empty_obj (Images)

for J := 1 to 10 by 1

read_image (Image, ImgPath + ImgName + J$'02')
concat_obj (Images, Image, Images)

endfor

Then, the image pairs must be defined, i.e., which image should be mapped to which image.

From := [1, 2, 3, 4, 6, 7, 8, 9, 3]

To := [2, 3, 4, 5, 7, 8, 9, 10, 8]

Now, characteristic points must be extracted from the images, which are then used for the matching between the
image pairs. The resulting projective transformation matrices1 must be accumulated.

1A projective transformation matrix describes a perspective projection. It consists of 3×3 values. If the last row contains the values [0,0,1],
it corresponds to a homogeneous transformation matrix of HALCON and therefore describes an affine transformation.

M
os

ai
ck

in
g

II

C-206 Uncalibrated Mosaicking

→

Figure 10.1: A first example for image mosaicking.

10.1 Rules for Taking Images for a Mosaic Image C-207

Num := |From|

ProjMatrices := []

for J := 0 to Num - 1 by 1

F := From[J]

T := To[J]

select_obj (Images, ImageFrom, F)

select_obj (Images, ImageTo, T)

points_harris (ImageFrom, SigmaGrad, SigmaSmooth, Alpha, Threshold, \

RowFromAll, ColumnFromAll)

points_harris (ImageTo, SigmaGrad, SigmaSmooth, Alpha, Threshold, \

RowToAll, ColumnToAll)

proj_match_points_ransac (ImageFrom, ImageTo, RowFromAll, ColumnFromAll, \

RowToAll, ColumnToAll, 'sad', MaskSize, \

RowMove, ColumnMove, RowTolerance, \

ColumnTolerance, Rotation, MatchThreshold, \

'gold_standard', DistanceThreshold, RandSeed, \

ProjMatrix, Points1, Points2)

ProjMatrices := [ProjMatrices,ProjMatrix]

disp_message (WindowHandle1, 'Point matches', 'window', 12, 12, 'black', \

'true')

Finally, the image mosaic can be generated.

gen_projective_mosaic (Images, MosaicImage, StartImage, From, To, \

ProjMatrices, StackingOrder, 'false', \

MosaicMatrices2D)

Note that image mosaicking is a tool for a quick and easy generation of large images from several overlapping
images. For this task, it is not necessary to calibrate the camera. If you need a high-precision image mosaic, you
should use the method described in chapter 9 on page 191.

In the following sections, the individual steps for the generation of a mosaic image are described.

10.1 Rules for Taking Images for a Mosaic Image

The following rules for the acquisition of the separate images should be considered:

• The images must overlap each other.

• The overlapping area of the images must be textured in order to allow the automatic matching process to
identify identical points in the images. The lack of texture in some overlapping areas may be overcome by
an appropriate definition of the image pairs (see section 10.2). If the whole object shows little texture, the
overlapping areas should be chosen larger.

• Overlapping images must have approximately the same scale. In general, the scale differences should not
exceed 5-10 %.

• The images should be radiometrically similar, at least in the overlapping areas, as no radiometric adaption
of the images is carried out. Otherwise, i.e., if the brightness differs heavily between neighboring images,
the seams between them will be clearly visible as can be seen in figure 10.2.

The images are mapped onto a common image plane using a projective transformation. Therefore, to generate a
geometrically accurate image mosaic from images of non-flat objects, the separate images must be acquired from
approximately the same point of view, i.e., the camera can only be rotated around its optical center (see figure 10.3).

When dealing with flat objects, it is possible to acquire the images from arbitrary positions and with arbitrary
orientations if the scale difference between the overlapping images is not too large (figure 10.4).

The lens distortions of the images are not compensated by the mosaicking process. Therefore, if lens distortions
are present in the images, they cannot be mosaicked with high accuracy, i.e., small distortions at the seams between

M
os

ai
ck

in
g

II

C-208 Uncalibrated Mosaicking

→
Figure 10.2: A second example for image mosaicking.

Object surface

Common optical center

Camera in three orientations

Figure 10.3: Image acquisition for non-flat objects.

neighboring images cannot be prevented (see figure 10.8 on page 211). To eliminate this effect, the lens distortions
can be compensated before starting the mosaicking process (see section 3.4.2 on page 86).

If processing time is an issue, it is advisable to acquire the images in the same orientation, i.e., neither the camera
nor the object should be rotated around the optical axis, too much. Then, the rotation range can be restricted for
the matching process (see section 10.4 on page 213).

10.2 Definition of Overlapping Image Pairs

As shown in the introductory example, it is necessary to define the overlapping image pairs between which the
transformation is to be determined. The successive matching process will be carried out for these image pairs only.

10.2 Definition of Overlapping Image Pairs C-209

Camera in three positions

Object surface

Figure 10.4: Image acquisition for flat objects.

1 2 3
1 2
3 4

(a) (b)

Figure 10.5: Two configurations of overlapping images.

Figure 10.5 shows two configurations of separate images. For configuration (a), the definition of the image pairs
is simply (1,2) and (2,3), which can be defined in HDevelop as:

From := [1,2]

To := [2,3]

In any case, it is important to ensure that each image must be “connected” to all the other images. For example, for
configuration (b) of figure 10.5, it is not possible to define the image pairs as (1,2) and (3,4), only, because images
1 and 2 would not be connected to images 3 and 4. In this case, it would, e.g., be possible to define the three image
pairs (1,2), (1,3), and (2,4).

From := [1,1,2]

To := [2,3,4]

Assuming there is no texture in the overlapping area of image two and four, the matching could be carried out
between images three and four instead.

From := [1,1,3]

To := [2,3,4]

If a larger number of separate images are mosaicked, or, e.g., an image configuration similar to the one displayed in
figure 10.6, where there are elongated rows of overlapping images, it is important to thoroughly arrange the image

M
os

ai
ck

in
g

II

C-210 Uncalibrated Mosaicking

pair configuration. Otherwise it is possible that some images do not fit together precisely. This happens since the
transformations between the images cannot be determined with perfect accuracy because of very small errors in
the point coordinates due to noise. These errors are propagated from one image to the other.

1 2 3 4 5
6 7 8 9 10

Figure 10.6: A configuration of ten overlapping images.

Figure 10.7 shows such an image sequence of ten images of a BGA and the resulting mosaic image. Figure 10.8
shows a cut-out of that mosaic image. It depicts the seam between image 5 and image 10 for two image pair con-
figurations, using the original images and the images where the lens distortions have been eliminated, respectively.
The position of the cut-out is indicated in figure 10.7 by a rectangle.

→

Figure 10.7: Ten overlapping images and the resulting (rigid) mosaic image.

First, the matching has been carried out in the two image rows separately and the two rows are connected via image
pair 1→ 6.

From := [1,2,3,4,6,7,8,9,1]

To := [2,3,4,5,7,8,9,10,6]

In this configuration the two neighboring images 5 and 10 are connected along a relatively long path (figure 10.9).

To improve the geometrical accuracy of the image mosaic, the connections between the two image rows could be
established by the image pair (3,8), as visualized in (figure 10.10)).

10.2 Definition of Overlapping Image Pairs C-211

with lens distortions lens distortions eliminated

unfavorable configuration

good configuration

Figure 10.8: Seam between image 5 and image 10 for various configurations.

7 8 96 10

2 3 41 5

Figure 10.9: Unfavorable configuration of image pairs.

This can be achieved by defining the image pairs as follows.

From := [1,2,3,4,6,7,8,9,3]

To := [2,3,4,5,7,8,9,10,8]

As can be seen in figure 10.8, now the neighboring images fit better.

Recapitulating, there are three basic rules for the arrangement of the image pairs:

Take care that

1. each image is connected to all the other images.

2. the path along which neighboring images are connected is not too long.

3. the overlapping areas of image pairs are large enough and contain enough texture to ensure a proper match-
ing.

In principle, it is also possible to define more image pairs than required (number of images minus one). However,
then it cannot be controlled which pairs are actually used. Therefore, we do not recommend this approach.

7 8 96 10

2 3 41 5

Figure 10.10: Good configuration of image pairs.

M
os

ai
ck

in
g

II

C-212 Uncalibrated Mosaicking

10.3 Detection of Characteristic Points

HALCON provides you with various operators for the extraction of characteristic points (interest points). The
most important of these operators are

• points_foerstner

• points_harris and points_harris_binomial

• points_lepetit

• points_sojka

• saddle_points_sub_pix

All of these operators can determine the coordinates of interest points with subpixel accuracy.

In figure 10.11, a test image together with typical results of these interest operators is displayed.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10.11: Comparison of typical results of interest operators. a) Test image; b) Förstner, junctions; c) Förstner,
area; d) Harris; e) Harris, binomial f) Lepetit; g) Sojka; h) Saddle points.

10.4 Matching of Characteristic Points C-213

The operator points_foerstner classifies the interest points into two categories: junction-like features and area-
like features. The results are very reproducible even in images taken from a different point of view. Therefore, it
is very well suited for the extraction of points for the subsequent matching. It is very accurate but computationally
the most expensive operator out of the interest operators presented in this section.

The results of the operator points_harris are very reproducible, too. Admittedly, the points extracted by the
operator points_harris are sometimes not meaningful to a human, e.g., they often lie slightly beside a corner
or an eye-catching image structure. Nevertheless, it is faster than the operator points_foerstner. The operator
points_harris_binomial detects points of interest using the binomial approximation of the points_harris

operator. It is therefore faster than points_harris.

The operator points_lepetit extracts points of interest like corners or blob-like structures from the image. This
operator can especially be used for very fast interest point extraction. It is the fastest out of the six operators
presented in this section.

The operator points_sojka is specialized in the extraction of corner points.

The operator saddle_points_sub_pix is designed especially for the extraction of saddle points, i.e., points
whose image intensity is minimal along one direction and maximal along a different direction.

The number of interest points influence the execution time and the result of the subsequent matching process.
The more interest points are used, the longer the matching takes. If too few points are used the probability of an
erroneous result increases.

In most cases, the default parameters of the interest operators need not be changed. Only if too many or too
few interest points are found adaptations of the parameters might be necessary. For a description of the pa-
rameters, please refer to the respective pages of the Reference Manual (points_foerstner, points_harris,
points_harris_binomial, points_lepetit, points_sojka, saddle_points_sub_pix).

10.4 Matching of Characteristic Points in Overlapping Areas and
Determination of the Transformation between the Images

The most demanding task during the generation of an image mosaic is the matching process. The operator
proj_match_points_ransac is able to perform the matching even if the two images are shifted and rotated
arbitrarily.

proj_match_points_ransac (ImageFrom, ImageTo, RowFromAll, ColumnFromAll, \

RowToAll, ColumnToAll, 'sad', MaskSize, RowMove, \

ColumnMove, RowTolerance, ColumnTolerance, \

Rotation, MatchThreshold, 'gold_standard', \

DistanceThreshold, RandSeed, ProjMatrix, Points1, \

Points2)

The only requirement is that the images should have approximately the same scale. If information about shift and
rotation is available it can be used to restrict the search space, which speeds up the matching process and makes it
more robust.

In case the matching fails, ensure that there are enough characteristic points and that the search space and the
maximum rotation are defined appropriately.

If the images that should be mosaicked contain repetitive patterns, like the two images of a BGA shown in fig-
ure 10.12a, it may happen that the matching does not work correctly. In the resulting erroneous mosaic image,
the separate images may not fit together or may be heavily distorted. To achieve a correct matching result for
such images, it is important to provide initial values for the shift between the images with the parameters RowMove
and ColMove. In addition, the search space should be restricted to an area that contains only one instance of the
repetitive pattern, i.e., the values of the parameters RowTolerance and ColTolerance should be chosen smaller
than the distance between the instances of the repetitive pattern. With this, it is possible to obtain proper mosaic
images, even for objects like BGAs (see figure 10.12b).

For a detailed description of the other parameters, please refer to the Reference Manual
(proj_match_points_ransac).

M
os

ai
ck

in
g

II

C-214 Uncalibrated Mosaicking

(a)

(b)

Figure 10.12: Separate images (a) and mosaic image (b) of a BGA.

The results of the operator proj_match_points_ransac are the projective transformation matrix and the two
tuples Points1 and Points2 that contain the indices of the matched input points from the two images.

The projective transformation matrices resulting from the matching between the image pairs must be accumulated.

ProjMatrices := [ProjMatrices,ProjMatrix]

Alternatively, if it is known that the mapping between the images is a rigid 2D transformation, the operator
proj_match_points_ransac can be used to determine the point correspondences only, since it returns the in-
dices of the corresponding points in the tuples Points1 and Points2. With this, the corresponding point coordi-
nates can be selected.

RowFrom := subset(RowFromAll,Points1)

ColumnFrom := subset(ColumnFromAll,Points1)

RowTo := subset(RowToAll,Points2)

ColumnTo := subset(ColumnToAll,Points2)

Then, the rigid transformation between the image pair can be determined with the operator vector_to_rigid.
Note that we have to add 0.5 to the coordinates to make the extracted pixel positions fit the coordinate system that
is used by the operator gen_projective_mosaic.

vector_to_rigid (RowFrom + 0.5, ColumnFrom + 0.5, RowTo + 0.5, \

ColumnTo + 0.5, HomMat2D)

Because gen_projective_mosaic expects a 3×3 transformation matrix, but vector_to_rigid returns a 2×3
matrix, we have to add the last row [0,0,1] to the transformation matrix before we can accumulate it.

ProjMatrix := [HomMat2D,0, 0, 1]

ProjMatrices := [ProjMatrices,ProjMatrix]

Furthermore, the operator proj_match_points_ransac_guided is available. Like
proj_match_points_ransac, it can be used to calculate the projective transformation matrix between
two images by finding correspondences between points. But in contrast to proj_match_points_ransac,
it is based on a known approximation of the projective transformation matrix. Thus, it can be used, for
example, to speed up the matching of very large images by implementing an image-pyramid-based projective
matching algorithm. The HDevelop example program %HALCONEXAMPLES%\hdevelop\Tools\Mosaicking\

mosaicking_pyramid.hdev shows how to implement the image-pyramid-based approach and compares the
runtime for different numbers of pyramid levels.

10.5 Generation of the Mosaic Image C-215

10.5 Generation of the Mosaic Image

Once the transformations between the image pairs are known the mosaic image can be generated with the operator
gen_projective_mosaic.

gen_projective_mosaic (Images, MosaicImage, StartImage, From, To, \

ProjMatrices, StackingOrder, 'false', \

MosaicMatrices2D)

It requires the images to be given in a tuple. All images are projected into the image plane of a so-called start image.
The start image can be defined by its position in the image tuple (starting with 1) with the parameter StartImage.

Additionally, the image pairs must be specified together with the corresponding transformation matrices.

The order in which the images are added to the mosaic image can be specified with the parameter StackingOrder.
The first index in this array will end up at the bottom of the image stack while the last one will be on top. If ’default’
is given instead of an array of integers, the canonical order (the order in which the images are given) will be used.

If the domains of the images should be transformed as well, the parameter TransformRegion must be set to ’true’.

The output parameter MosaicMatrices2D contains the projective 3×3 transformation matrices for the map-
ping of the separate images into the mosaic image. These matrices can, e.g., be used to transform features
extracted from the separate images into the mosaic image by using the operators projective_trans_pixel,
projective_trans_region, projective_trans_contour_xld, or projective_trans_image.

10.6 Bundle Adjusted Mosaicking

It is also possible to generate the mosaic based on the matching results of all overlapping image pairs. The
transformation matrices between the images are then determined together within one bundle adjustment. For this,
the operators bundle_adjust_mosaic and gen_bundle_adjusted_mosaic are used.

The main advantage of the bundle adjusted mosaicking compared with the mosaicking based on single image pairs
is that the bundle adjustment determines the geometry of the mosaic as robustly as possible. Typically, this leads
to more accurate results. Another advantage is that there is no need to figure out a good pair configuration, you
simply pass the matching results of all overlapping image pairs. What is more, it is possible to define the class of
transformations that is used for the transformation between the individual images. A disadvantage of the bundle
adjusted mosaicking is that it takes more time to perform the matching between all overlapping image pairs instead
of just using a subset. Furthermore, if the matching between two images was erroneous, sometimes the respective
image pair is difficult to find in the set of all image pairs.

With this, it is obvious that the bundle adjustment is worthwhile if there are multiple overlaps between the images,
i.e., if there are more than n− 1 overlapping image pairs, with n being the number of images. Another reason for
using the bundle adjusted mosaicking is the possibility to define the class of transformations.

The example program %HALCONEXAMPLES%\solution_guide\3d_vision\

bundle_adjusted_mosaicking.hdev shows how to generate the bundle adjusted mosaic from the ten
images of the BGA displayed in figure 10.7 on page 210. The design of the program is very similar to that of the
example program %HALCONEXAMPLES%\solution_guide\3d_vision\mosaicking.hdev, which is described
in the introduction of chapter 10 on page 205. The main differences are that

• the matching is carried out between all overlapping images,

• in addition to the projective transformation matrices also the coordinates of the corresponding points must
be accumulated, and

• the operator gen_projective_mosaic is replaced with the operators bundle_adjust_mosaic and
gen_bundle_adjusted_mosaic.

First, the matching is carried out between all overlapping image pairs, which can be defined as follows:

From := [1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5]

To := [6, 7, 2, 6, 7, 8, 3, 7, 8, 9, 4, 8, 9, 10, 5, 9, 10]

M
os

ai
ck

in
g

II

C-216 Uncalibrated Mosaicking

In addition to the accumulation of the projective transformation matrices, as described in section 10.4 on page
213, also the coordinates of the corresponding points as well as the number of corresponding points must be
accumulated.

Rows1 := [Rows1,subset(RowFAll,Points1)]

Cols1 := [Cols1,subset(ColFAll,Points1)]

Rows2 := [Rows2,subset(RowTAll,Points2)]

Cols2 := [Cols2,subset(ColTAll,Points2)]

NumCorrespondences := [NumCorrespondences,|Points1|]

This data is needed by the operator bundle_adjust_mosaic, which determines the bundle adjusted transforma-
tion matrices.

bundle_adjust_mosaic (10, StartImage, From, To, ProjMatrices, Rows1, Cols1, \

Rows2, Cols2, NumCorrespondences, Transformation, \

MosaicMatrices2D, Rows, Cols, Error)

The parameter Transformation defines the class of transformations that is used for the transformation between
the individual images. Possible values are ’projective’, ’affine’, ’similarity’, and ’rigid’. Thus, if you know, e.g.,
that the camera looks perpendicular onto a planar object and that the camera movement between the images is
restricted to rotations and translations in the object plane, you can choose the transformation class ’rigid’. If
translations may also occur in the direction perpendicular to the object plane, you must use ’similarity’ because
this transformation class allows scale differences between the images. If the camera looks tilted onto the object,
the transformation class ’projective’ must be used, which can be approximated by the transformation class ’affine’.
Figure 10.13 shows cut-outs of the resulting mosaic images. They depict the seam between image 5 and image
10. The mosaic images have been created using the images where the lens distortions have been eliminated. The
position of the cut-out within the whole mosaic image is indicated by the rectangle in figure 10.7 on page 210.

Finally, with the transformation matrices MosaicMatrices2D, which are determined by the operator
bundle_adjust_mosaic, the mosaic can be generated with the operator gen_bundle_adjusted_mosaic.

gen_bundle_adjusted_mosaic (Images, MosaicImage, MosaicMatrices2D, \

StackingOrder, TransformRegion, TransMat2D)

(a) (b)

(c) (d)

Figure 10.13: Seam between image 5 and image 10 for different classes of transformations: (a) projective, (b) affine,
(c) similarity, and (d) rigid.

10.7 Spherical Mosaicking

The methods described in the previous sections arranged the images on a plane. As the name suggests, using
spherical mosaicking you can arrange them on a sphere instead. Note that this method can only be used if the
camera is only rotated around its optical center or zoomed. If the camera movement includes a translation or if the
rotation is not performed exactly around the optical center, the resulting mosaic image will not be accurate and can
therefore not be used for high-accuracy applications.

To create a spherical mosaic, you first perform the matching as described in the previous sections to determine
the projective transformation matrices between the individual images. This information is the input for the op-
erator stationary_camera_self_calibration, which determines the internal camera parameters of the cam-
era and the rotation matrices for each image. Based on this information, the operator gen_spherical_mosaic

10.7 Spherical Mosaicking C-217

then creates the mosaic image. Please have a look at the HDevelop example program %HALCONEXAMPLES%\

hdevelop\Calibration\Self-Calibration\stationary_camera_self_calibration.hdev for more in-
formation about how to use these operators.

As an alternative, you can map the images on the six sides of a cube using gen_cube_map_mosaic. Cube maps
are especially useful in computer graphics.

M
os

ai
ck

in
g

II

C-218 Uncalibrated Mosaicking

Rectification of Arbitrary Distortions C-219

Chapter 11

Rectification of Arbitrary Distortions

For many applications like OCR or bar code reading, distorted images must be rectified prior to the extraction of
information. The distortions may be caused by the perspective projection and by the radial lens distortions as well
as by the decentering lens distortions, a non-flat object surface, or by any other reason. In the first three cases,
i.e., if the object surface is flat and the camera shows only radial or decentering distortions, the rectification can be
carried out very precisely as described in section 3.4.1 on page 80. For the remaining cases, a piecewise bilinear
rectification can be carried out. In HALCON, this kind of rectification is called grid rectification.

The following example (%HALCONEXAMPLES%\hdevelop\Tools\Grid-Rectification\
grid_rectification.hdev) shows how the grid rectification can be used to rectify the image of a cylindrically
shaped object (figure 11.1).

a) b)

Figure 11.1: Cylindrical object: a) Original image; b) rectified image.

The main idea of the grid rectification is that the mapping for the rectification is determined from an image of the
object, where the object is covered by a known pattern.

First, this pattern, which is called rectification grid, must be created with the operator
create_rectification_grid.

create_rectification_grid (WidthOfGrid, NumSquares, 'rectification_grid.ps')

The resulting PostScript file must be printed. An example for such a rectification grid is shown in figure 11.2a.

Now, the object must be wrapped with the rectification grid and an image of the wrapped object must be taken
(figure 11.2b).

R
ec

tifi
ca

tio
n

C-220 Rectification of Arbitrary Distortions

a) b)

Figure 11.2: a) Example of a rectification grid. b) Cylindrical object wrapped with the rectification grid.

From this image, the mapping that describes the transformation from the distorted image into the rectified image
can be derived. For this, first, the rectification grid must be extracted. Then, the rectification map is derived from
the distorted grid. This can be achieved by the following lines of code:

find_rectification_grid (Image, GridRegion, MinContrast, Radius)

reduce_domain (Image, GridRegion, ImageReduced)

saddle_points_sub_pix (ImageReduced, 'facet', SigmaSaddlePoints, Threshold, \

Row, Col)

connect_grid_points (ImageReduced, ConnectingLines, Row, Col, \

SigmaConnectGridPoints, MaxDist)

gen_grid_rectification_map (ImageReduced, ConnectingLines, Map, Meshes, \

GridSpacing, 0, Row, Col, 'bilinear')

Using the derived map, any image that shows the same distortions can be rectified such that the parts that were
covered by the rectification grid appear undistorted in the rectified image (figure 11.1b). This mapping is performed
by the operator map_image.

map_image (ImageReduced, Map, ImageMapped)

In the following section, the basic principle of the grid rectification is described. Then, some hints for taking
images of the rectification grid are given. In section 11.3 on page 223, the use of the involved HALCON operators
is described in more detail based on the above example application. Finally, it is described briefly how to use
self-defined grids for the generation of rectification maps.

11.1 Basic Principle

The basic principle of the grid rectification is that a mapping from the distorted image into the rectified image is
determined from a distorted image of the rectification grid whose undistorted geometry is well known: The black
and white fields of the printed rectification grid are squares (figure 11.3).

In the distorted image, the black and white fields do not appear as squares (figure 11.4a) because of the non-planar
object surface, the perspective distortions, and the lens distortions.

To determine the mapping for the rectification of the distorted image, the distorted rectification grid must
be extracted. For this, first, the corners of the black and white fields must be extracted with the operator
saddle_points_sub_pix (figure 11.4b). These corners must be connected along the borders of the black and
white fields with the operator connect_grid_points (figure 11.4c). Finally, the connecting lines must be com-
bined into meshes (figure 11.4d) with the operator gen_grid_rectification_map, which also determines the
mapping for the rectification of the distorted image.

11.1 Basic Principle C-221

Figure 11.3: Rectification grid.

a) b)

c) d)

Figure 11.4: Distorted rectification grid: a) Image; b) extracted corners of the black and white fields; c) lines that
connect the corners; d) extracted rectification grid.

If you want to use a self-defined grid, the grid points must be defined by yourself. Then, the operator
gen_arbitrary_distortion_map can be used to determine the mapping (see section 11.4 on page 225 for
an example).

The mapping is determined such that the distorted rectification grid will be mapped into its original undistorted
geometry (figure 11.5). With this mapping, any image that shows the same distortions can be rectified easily
with the operator map_image. Note that within the meshes a bilinear interpolation is carried out. Therefore, it is
important to use a rectification grid with an appropriate grid size (see section 11.2 for details).

R
ec

tifi
ca

tio
n

C-222 Rectification of Arbitrary Distortions

→
a) b)

Figure 11.5: Mapping of the distorted rectification grid (a) into the undistorted rectification grid (b).

11.2 Rules for Taking Images of the Rectification Grid

If you want to achieve accurate results, please follow the rules given in this section:

• The image must not be overexposed or underexposed: otherwise, the extraction of the corners of the black
and white fields of the rectification grid may fail.

• The contrast between the bright and the dark fields of the rectification grid should be as high as possible.

• Ensure that the rectification grid is homogeneously illuminated.

• The images should contain as little noise as possible.

• The border length of the black and white fields should be at least 10 pixels.

In addition to these few rules for the taking of the images of the rectification grid, it is very important to use a
rectification grid with an appropriate grid size because the mapping is determined such that within the meshes of
the rectification grid a bilinear interpolation is applied. Because of this, non-linear distortions within the meshes
cannot be eliminated.

The use of a rectification grid that is too coarse (figure 11.6a), i.e., whose grid size is too large, leads to errors in
the rectified image (figure 11.6b).

a) b)

Figure 11.6: Cylindrical object covered with a very coarse rectification grid: a) Distorted image; b) rectified image.

If it is necessary to fold the rectification grid, it should be folded along the borders of the black and white fields.
Otherwise, i.e., if the fold crosses these fields (figure 11.7a), the rectified image (figure 11.7b) will contain distor-
tions because of the bilinear interpolation within the meshes.

11.3 Machine Vision on Ruled Surfaces C-223

a) b)

Figure 11.7: Rectification grid folded across the borders of the black and white fields: a) Distorted image; b) rectified
image.

11.3 Machine Vision on Ruled Surfaces

In this section, the rectification of images of ruled surfaces is described in detail. Again, the ex-
ample of the cylindrically shaped object (%HALCONEXAMPLES%\hdevelop\Tools\Grid-Rectification\
grid_rectification.hdev) is used to explain the involved operators.

First, the operator create_rectification_grid is used to create a suitable rectification grid.

create_rectification_grid (WidthOfGrid, NumSquares, 'rectification_grid.ps')

The parameter WidthOfGrid defines the effectively usable size of the rectification grid in meters and the parameter
NumSquares sets the number of squares (black and white fields) per row. The rectification grid is written to the
PostScript file that is specified by the parameter GridFile.

To determine the mapping, an image of the rectification grid, wrapped around the object, must be taken as described
in section 11.2 on page 222. Figure 11.8a shows an image of a cylindrical object and figure 11.8b shows the same
object wrapped by the rectification grid.

Then, the rectification grid is searched in this image with the operator find_rectification_grid.

find_rectification_grid (Image, GridRegion, MinContrast, Radius)

The operator find_rectification_grid extracts image areas with a contrast of at least MinContrast and fills
up the holes in these areas. Note that in this case, contrast is defined as the gray value difference of neighboring
pixels in a slightly smoothed copy of the image (Gaussian smoothing with σ = 1.0). Therefore, the value for
the parameter MinContrast must be set significantly lower than the gray value difference between the black and
white fields of the rectification grid. Small areas of high contrast are then eliminated by an opening with the
radius Radius. The resulting region is used to restrict the search space for the following steps with the operator
reduce_domain (see figure 11.9a).

reduce_domain (Image, GridRegion, ImageReduced)

The corners of the black and white fields appear as saddle points in the image. They can be extracted with the
operator saddle_points_sub_pix (see figure 11.9b).

saddle_points_sub_pix (ImageReduced, 'facet', SigmaSaddlePoints, Threshold, \

Row, Col)

The parameter Sigma controls the amount of Gaussian smoothing that is carried out before the actual extraction of
the saddle points. Which point is accepted as a saddle point is based on the value of the parameter Threshold. If

R
ec

tifi
ca

tio
n

C-224 Rectification of Arbitrary Distortions

a) b)

Figure 11.8: Cylindrical object: a) Without and b) with rectification grid.

Threshold is set to higher values, fewer but more distinct saddle points are returned than if Threshold is set to
lower values. The filter method that is used for the extraction of the saddle points can be selected by the parameter
Filter. It can be set to ’facet’ or ’gauss’. The method ’facet’ is slightly faster. The method ’gauss’ is slightly
more accurate but tends to be more sensitive to noise.

a) b) c)

Figure 11.9: Distorted rectification grid: a) Image reduced to the extracted area of the rectification grid; b) extracted
corners of the black and white fields; c) lines that connect the corners.

To generate a representation of the distorted rectification grid, the extracted saddle points must be connected along
the borders of the black and white fields (figure 11.9c). This is done with the operator connect_grid_points.

connect_grid_points (ImageReduced, ConnectingLines, Row, Col, \

SigmaConnectGridPoints, MaxDist)

Again, the parameter Sigma controls the amount of Gaussian smoothing that is carried out before the extraction
of the borders of the black and white fields. When a tuple of three values [sigma_min, sigma_max, sigma_step] is
passed instead of only one value, the operator connect_grid_points tests every sigma within the given range
from sigma_min to sigma_max with a step size of sigma_step and chooses the sigma that causes the largest number
of connecting lines. The same happens when a tuple of only two values sigma_min and sigma_max is passed.
However, in this case a fixed step size of 0.05 is used. The parameter MaxDist defines the maximum distance with
which an edge may be linked to the respectively closest saddle point. This helps to overcome the problem that edge
detectors typically return inaccurate results in the proximity of edge junctions. Figure 11.10 shows the connecting
lines if the parameter MaxDist has been selected inappropriately: In figure 11.10a, MaxDist has been selected to
small, whereas in figure 11.10b, it has been selected too large.

Then, the rectification map is determined from the distorted grid with the operator
gen_grid_rectification_map.

gen_grid_rectification_map (ImageReduced, ConnectingLines, Map, Meshes, \

GridSpacing, 0, Row, Col, 'bilinear')

11.4 Using Self-Defined Rectification Grids C-225

a) b)

Figure 11.10: Connecting lines: Parameter MaxDist selected a) too small and b) too large.

The parameter GridSpacing defines the size of the grid meshes in the rectified image. Each of the black and white
fields is projected onto a square of GridSpacing × GridSpacing pixels. The parameter Rotation controls the
orientation of the rectified image. The rectified image can be rotated by 0, 90, 180, or 270 degrees, or it is rotated
such that the black circular mark is left of the white circular mark if Rotation is set to ’auto’.

Using the derived rectification map, any image that shows the same distortions can be rectified very fast with the
operator map_image (see figure 11.11). Note that the objects must appears at exactly the same position in the
distorted images.

map_image (ImageReduced, Map, ImageMapped)

a) b)

Figure 11.11: Rectified images: a) Rectification grid; b) object.

11.4 Using Self-Defined Rectification Grids

Up to now, we have used the predefined rectification grid together with the appropriate operators for its segmenta-
tion. In this section, an alternative to this approach is presented. You can arbitrarily define the rectification grid by

R
ec

tifi
ca

tio
n

C-226 Rectification of Arbitrary Distortions

yourself, but note that in this case you must also carry out the segmentation by yourself.

This example shows how the grid rectification can be used to generate arbitrary distortion maps based on self-
defined grids.

The example application is a print inspection. It is assumed that some parts are missing and that smudges are
present. In addition, lines may be vertically shifted, e.g., due to an inaccurate paper transport, i.e., distortions in
the vertical direction of the printed document may be present. These distortions should not result in a rejection
of the tested document. Therefore, it is not possible to simply compute the difference image between a reference
image and the image that must be checked.

Figure 11.12a shows the reference image and figure 11.12b the test image that must be checked.

missing line

smudges

displaced lines

a) b)

Figure 11.12: Images of one page of a document: a) Reference image; b) test image that must be checked.

In a first step, the displacements between the lines in the reference document and the test document are determined.
With this, the rectification grid is defined. The resulting rectification map is applied to the reference image to
transform it into the geometry of the test image. Now, the difference image of the mapped reference image and the
test image can be computed.

The HDevelop example program %HALCONEXAMPLES%\solution_guide\3d_vision\

grid_rectification_arbitrary_distortion.hdev uses the component-based matching to determine
corresponding points in the reference image and the test image. First, the component model is generated with
the operator create_component_model. Then, the corresponding points are searched in the test image with the
operator find_component_model.

Based on the corresponding points of the reference and the test image (RowRef, ColRef, RowTest, and ColTest),
the coordinates of the grid points of the distorted grid are determined. In this example, the row and column
coordinates can be determined independently from each other because only the row coordinates are distorted.
Note that the upper left grid point of the undistorted grid is assumed to have the coordinates (-0.5, -0.5). This
means that the corresponding grid point of the distorted grid will be mapped to the point (-0.5, -0.5). Because there
are only vertical distortions in this example, the column coordinates of the distorted grid are equidistant, starting
at the value -0.5.

11.4 Using Self-Defined Rectification Grids C-227

GridSpacing := 10

ColShift := mean(ColTest - ColRef)

RefGridColValues := []

for HelpCol := -0.5 to WidthTest + GridSpacing by GridSpacing

RefGridColValues := [RefGridColValues,HelpCol + ColShift]

endfor

The row coordinates of the distorted grid are determined by a linear interpolation between the above determined
pairs of corresponding row coordinates.

MinValue := 0

MaxValue := HeightTest + GridSpacing

sample_corresponding_values (RowTest, RowRef - 0.5, MinValue, MaxValue, \

GridSpacing, RefGridRowValues)

The interpolation is performed within the procedure which is part of the HDevelop example program
%HALCONEXAMPLES%\solution_guide\3d_vision\grid_rectification_arbitrary_distortion.hdev.

procedure sample_corresponding_values (Values, CorrespondingValues,

MinValue, MaxValue,

InterpolationInterval,

SampledCorrespondingValues):::

Now, the distorted grid is generated row by row.

RefGridRow := []

RefGridCol := []

Ones := gen_tuple_const(|RefGridColValues|,1)

for r := 0 to |RefGridRowValues| - 1 by 1

RefGridRow := [RefGridRow,RefGridRowValues[r] * Ones]

RefGridCol := [RefGridCol,RefGridColValues]

endfor

The operator gen_arbitrary_distortion_map uses this distorted grid to derive the rectification map that maps
the reference image into the geometry of the test image1.

gen_arbitrary_distortion_map (Map, GridSpacing, RefGridRow, RefGridCol, \

|RefGridColValues|, WidthRef, HeightRef, \

'bilinear')

With this rectification map, the reference image can be transformed into the geometry of the test image. Note that
the size of the mapped image depends on the number of grid cells and on the size of one grid cell, which must be
defined by the parameter GridSpacing. Possibly, the size of the mapped reference image must be adapted to the
size of the test image.

map_image (ImageRef, Map, ImageMapped)

crop_part (ImageMapped, ImagePart, 0, 0, WidthTest, HeightTest)

Finally, the test image can be subtracted from the mapped reference image.

sub_image (ImagePart, ImageTest, ImageSub, 1, 128)

Figure 11.13 shows the resulting difference image. In this case, missing parts appear dark while the smudges
appear bright.

The differences between the test image and the reference image can now be extracted easily from the difference
image with the operator threshold. If the difference image is not needed, e.g., for visualization purposes, the
differences can be derived directly from the test image and the reference image with the operator dyn_threshold.

1In this case, the reference image is mapped into the geometry of the test image to facilitate the marking of the differences in the test image.
Obviously, the rectification grid can also be defined such that the test image is mapped into the geometry of the reference image.

R
ec

tifi
ca

tio
n

C-228 Rectification of Arbitrary Distortions

a) b)

Figure 11.13: Difference image: a) The entire image overlaid with a rectangle that indicates the position of the
cut-out. b) A cut-out.

Figure 11.14 shows the differences in a cut-out of the reference image (figure 11.14a) and of the test image (fig-
ure 11.14b). The calibration marks near the left border of figure 11.14b indicate the vertical position of the com-
ponents that were used for the determination of the corresponding points. Vertical shifts of the components with
respect to the reference image are indicated by a vertical line of the respective length that is attached to the respec-
tive calibration mark. All other differences that could be detected between the test image and the reference image
are encircled.

11.4 Using Self-Defined Rectification Grids C-229

a) b)

Figure 11.14: Cut-out of the reference and the checked test image with the differences marked in the test image: a)
Reference image; b) checked test image.

R
ec

tifi
ca

tio
n

C-230 Rectification of Arbitrary Distortions

HDevelop Procedures Used in this Solution Guide C-231

Appendix A

HDevelop Procedures Used in this
Solution Guide

A.1 gen_hom_mat3d_from_three_points

procedure gen_hom_mat3d_from_three_points (Origin, PointOnXAxis,

PointInXYPlane, HomMat3d):::

XAxis := [PointOnXAxis[0] - Origin[0],PointOnXAxis[1] - Origin[1], \

PointOnXAxis[2] - Origin[2]]

XAxisNorm := XAxis / sqrt(sum(XAxis * XAxis))

VectorInXYPlane := [PointInXYPlane[0] - Origin[0], \

PointInXYPlane[1] - Origin[1], \

PointInXYPlane[2] - Origin[2]]

cross_product (XAxisNorm, VectorInXYPlane, ZAxis)

ZAxisNorm := ZAxis / sqrt(sum(ZAxis * ZAxis))

cross_product (ZAxisNorm, XAxisNorm, YAxisNorm)

HomMat3d_WCS_to_RectCCS := [XAxisNorm[0],YAxisNorm[0],ZAxisNorm[0], \

Origin[0],XAxisNorm[1],YAxisNorm[1], \

ZAxisNorm[1],Origin[1],XAxisNorm[2], \

YAxisNorm[2],ZAxisNorm[2],Origin[2]]

hom_mat3d_invert (HomMat3d_WCS_to_RectCCS, HomMat3d)

return ()

This procedure uses the procedure

procedure cross_product (V1, V2, CrossProduct)

CrossProduct := [V1[1] * V2[2] - V1[2] * V2[1], \

V1[2] * V2[0] - V1[0] * V2[2], \

V1[0] * V2[1] - V1[1] * V2[0]]

return ()

P
ro

ce
du

re
s

C-232 HDevelop Procedures Used in this Solution Guide

A.2 parameters_image_to_world_plane_centered

procedure parameters_image_to_world_plane_centered (CamParam, Pose,

CenterRow, CenterCol,

WidthMappedImage,

HeightMappedImage,

ScaleForCenteredImage,

PoseForCenteredImage):::

* Determine the scale for the mapping

* (here, the scale is determined such that in the

* surroundings of the given point the image scale of the

* mapped image is similar to the image scale of the original image)

Dist_ICS := 1

image_points_to_world_plane (CamParam, Pose, CenterRow, CenterCol, 1, \

CenterX, CenterY)

image_points_to_world_plane (CamParam, Pose, CenterRow + Dist_ICS, \

CenterCol, 1, BelowCenterX, BelowCenterY)

image_points_to_world_plane (CamParam, Pose, CenterRow, \

CenterCol + Dist_ICS, 1, RightOfCenterX, \

RightOfCenterY)

distance_pp (CenterY, CenterX, BelowCenterY, BelowCenterX, \

Dist_WCS_Vertical)

distance_pp (CenterY, CenterX, RightOfCenterY, RightOfCenterX, \

Dist_WCS_Horizontal)

ScaleVertical := Dist_WCS_Vertical / Dist_ICS

ScaleHorizontal := Dist_WCS_Horizontal / Dist_ICS

ScaleForCenteredImage := (ScaleVertical + ScaleHorizontal) / 2.0

* Determine the parameters for set_origin_pose such

* that the point given via get_mbutton will be in the center of the

* mapped image

DX := CenterX - ScaleForCenteredImage * WidthMappedImage / 2.0

DY := CenterY - ScaleForCenteredImage * HeightMappedImage / 2.0

DZ := 0

set_origin_pose (Pose, DX, DY, DZ, PoseForCenteredImage)

return ()

A.3 parameters_image_to_world_plane_entire

procedure parameters_image_to_world_plane_entire (Image, CamParam, Pose,

WidthMappedImage,

HeightMappedImage,

ScaleForEntireImage,

PoseForEntireImage):::

* Transform the image border into the WCS (scale = 1)

full_domain (Image, ImageFull)

get_domain (ImageFull, Domain)

gen_contour_region_xld (Domain, ImageBorder, 'border')
contour_to_world_plane_xld (ImageBorder, ImageBorderWCS, CamParam, Pose, 1)

smallest_rectangle1_xld (ImageBorderWCS, MinY, MinX, MaxY, MaxX)

* Determine the scale of the mapping

ExtentX := MaxX - MinX

ExtentY := MaxY - MinY

ScaleX := ExtentX / WidthMappedImage

ScaleY := ExtentY / HeightMappedImage

ScaleForEntireImage := max([ScaleX,ScaleY])

* Shift the pose by the minimum X and Y coordinates

set_origin_pose (Pose, MinX, MinY, 0, PoseForEntireImage)

return ()

A.4 tilt_correction C-233

A.4 tilt_correction

procedure tilt_correction (DistanceImage, RegionDefiningReferencePlane,

DistanceImageCorrected):::

* Reduce the given region, which defines the reference plane

* to the domain of the distance image

get_domain (DistanceImage, Domain)

intersection (RegionDefiningReferencePlane, Domain, \

RegionDefiningReferencePlane)

* Determine the parameters of the reference plane

moments_gray_plane (RegionDefiningReferencePlane, DistanceImage, MRow, MCol, \

Alpha, Beta, Mean)

* Generate a distance image of the reference plane

get_image_pointer1 (DistanceImage, Pointer, Type, Width, Height)

area_center (RegionDefiningReferencePlane, Area, Row, Column)

gen_image_surface_first_order (ReferencePlaneDistance, Type, Alpha, Beta, \

Mean, Row, Column, Width, Height)

* Subtract the distance image of the reference plane

* from the distance image of the object

sub_image (DistanceImage, ReferencePlaneDistance, DistanceImageWithoutTilt, \

1, 0)

* Determine the scale factor for the reduction of the distance values

CosGamma := 1.0 / sqrt(Alpha * Alpha + Beta * Beta + 1)

* Reduce the distance values

scale_image (DistanceImageWithoutTilt, DistanceImageCorrected, CosGamma, 0)

return ()

A.5 calc_calplate_pose_movingcam

procedure calc_calplate_pose_movingcam (CalibObjInBasePose, ToolInCamPose,

ToolInBasePose, CalibObjInCamPose):::

* CalibObjInCamPose = cam_H_calplate

* = cam_H_tool * tool_H_base * base_H_calplate

* = ToolInCamPose * BaseInToolPose * CalibrationPose

pose_invert (ToolInBasePose, BaseInToolPose)

pose_compose (ToolInCamPose, BaseInToolPose, BaseInCamPose)

pose_compose (BaseInCamPose, CalibObjInBasePose, CalibObjInCamPose)

return ()

A.6 calc_calplate_pose_stationarycam

procedure calc_calplate_pose_stationarycam (CalObjInToolPose, BaseInCamPose,

ToolInBasePose,

CalObjInCamPose):::

* CalObjInCamPose = cam_H_calplate = cam_H_base * base_H_tool * \

* tool_H_calplate

* = \

* BaseInCamPose*ToolInBasePose*CalObjInToolPose

pose_compose (BaseInCamPose, ToolInBasePose, ToolInCamPose)

pose_compose (ToolInCamPose, CalObjInToolPose, CalObjInCamPose)

return ()

P
ro

ce
du

re
s

C-234 HDevelop Procedures Used in this Solution Guide

A.7 define_reference_coord_system

procedure define_reference_coord_system (ImageName, CamParam, CalplateFile,

WindowHandle, PoseCamRef):::

read_image (RefImage, ImageName)

dev_display (RefImage)

caltab_points (CalplateFile, X, Y, Z)

* parameter settings for find_caltab and find_marks_and_pose

SizeGauss := 3

MarkThresh := 100

MinDiamMarks := 5

StartThresh := 128

DeltaThresh := 10

MinThresh := 18

Alpha := 0.9

MinContLength := 15

MaxDiamMarks := 100

find_caltab (RefImage, Caltab, CalplateFile, SizeGauss, MarkThresh, \

MinDiamMarks)

find_marks_and_pose (RefImage, Caltab, CalplateFile, CamParam, StartThresh, \

DeltaThresh, MinThresh, Alpha, MinContLength, \

MaxDiamMarks, RCoord, CCoord, PoseCamRef)

disp_3d_coord_system (WindowHandle, CamParam, PoseCamRef, 0.01)

return ()

Index C-235

Index

2D projective matrix from RANSAC point matching,
213

3D affine transformation of point, 78
3D alignment, 185
3D coordinates, 13
3D coordinates from binocular stereo disparity, 137
3D coordinates from multi-view stereo images, 143
3D coordinates with sheet of light, 159
3D distance from binocular stereo disparity, 137
3D homogeneous transformation matrix, 18
3D inspection, 10
3D measurement plane, 73
3D object model, 38
3D pose (position and orientation), 20
3D pose estimation, 91
3D pose of circle, 115
3D pose of rectangle, 116
3D reconstruction

guide, 11
3D reconstruction with binocular stereo, 130
3D reconstruction with multi-view stereo, 141
3D reconstruction with sheet of light (laser triangu-

lation), 157
3D rotation, 15
3D transformation, 13
3D transformation matrix, 14
3D translation, 14
3D vision, 9
3D vision with single camera, 59

first example, 60

access 3D matching model (surface-based), 106, 110
accuracy of 3D measuring with single camera, 87
acquire image for grid rectification, 222
acquire images for camera calibration, 71
acquire images for depth from focus, 170
acquire images for stereo camera calibration, 123
acquire images for uncalibrated mosaicking, 207
affine 3D transformation of points, 20
area scan camera model, 26

binocular stereo (uncalibrated), 138
bundle adjust mosaic images, 215

calibrate aberration for depth from focus, 172
calibrate camera before hand-eye calibration, 179
calibrate camera before or during hand-eye calibra-

tion, 177
calibrate camera parameters, 72
calibrate external camera parameters, 73
calibrate hand-eye system parameters, 183

calibrate internal camera parameters, 72
calibrate line scan camera parameters, 76
calibrate multiple cameras, 122
calibrate sheet-of-light setup using a special 3D cali-

bration object, 154
calibrate sheet-of-light system parameters, 151
calibrated camera setup model, 140
calibrated external camera parameters, 73
calibrated internal camera parameters, 72
calibrated mosaicking using a single calibration

plate, 193
calibrated mosaicking using multiple calibration

plate, 195
camera calibration, 61
camera calibration results, 72
camera calibration troubleshooting, 76
camera coordinate system (3D), 26
camera model (3D), 25
camera scale factor, 32
change lens distortion, 79
change radial distortion of points, 79
change radial distortion of XLD contours, 79, 86
check success of camera calibration, 72
connect points of rectification grid, 220
convert 3D pose into 3D homogeneous matrix, 21,

78, 88
convert 3D pose type, 21
correlation-based stereo, 125
create 3D homogeneous identity matrix, 20
create 3D matching model (deformable surface-

based), 109
create 3D matching model (shape-based), 96
create 3D matching model (surface-based), 105
create 3D object model from 3D coordinates, 105
create calibration plate, 70
create camera calibration data model, 62
create camera setup model, 140
create data model for hand-eye calibration, 180
create mosaic image, 215
create rectification grid, 223
create sheet-of-light model, 158
create spherical mosaic, 216
create XLD contour of region, 78

delete observations from camera calibration data
model, 75

depth from focus, 163
example, 171

determine z translation for SCARA robots, 184
disparity image with correlation-based stereo, 130
disparity image with multi-scanline stereo, 133

In
de

x

C-236 Index

disparity image with multigrid stereo, 132
division model of lens distortion, 28
dual quaternions, 25

external camera parameters, 26
extract points for uncalibrated mosaicking, 212

find 3D matching model (deformable surface-based),
110

find 3D matching model (shape-based), 99
find 3D matching model (surface-based), 106
find calibration plate, 71
find calibration plate marks and 3D pose, 71
focal length, 26
fundamental matrix from RANSAC point matching,

138

get 3D object pose, 9
get measurement range for depth from focus, 166
grid rectification, 219

background information, 220

hand-eye calibration, 177
hand-eye calibration with articulated robot or with

SCARA robot, 175
hand-eye calibration with camera or 3D sensor, 176
hand-eye calibration with moving camera or station-

ary camera, 177
hypercentric camera, 34

image center point, 32
image plane, 26
image plane coordinate system, 26
internal camera parameters, 26

lens distortion models
guide, 64

lens distortion of camera parameters, 79, 86
lens distortion of image, 86
line scan camera model, 35

mapping for grid rectification, 220
mapping from image coordinates to 3D coordinates,

80
mapping to change lens distortion, 86
mapping to rectify arbitrary distortion, 220
match points for uncalibrated mosaicking, 213
measure volume with depth from focus, 171
mosaicking (image stitching) calibrated, 191
mosaicking (image stitching) uncalibrated, 205
multi-scanline stereo, 125
multigrid stereo, 125
multiply 3D homogeneous matrix, 21

obtain calibration plate, 67

parallel projection, 26
perspective projection, 26
pinhole camera, 25
Plücker Coordinates, 24
polynomial model of lens distortion, 28

pose estimation for 3D alignment, 186
pose estimation from 3D matching (deformable

surface-based), 107
pose estimation from 3D matching (shape-based), 95
pose estimation from 3D matching (surface-based),

104
pose estimation from matching (descriptor-based),

114
pose estimation from matching (perspective de-

formable), 114
pose estimation from point correspondences, 92
pose estimation from primitives fitting, 111
prepare 3D object model, 96
prepare the calibration input data, 179
problem handling for 3D matching (shape-based),

101

quaternion, 25

read 3D model (shape-based), 98
read 3D object model, 96, 105, 108
read 3D pose, 21
reconstruct 3D distance image with correlation-

based stereo, 134
reconstruct 3D distance image with multi-scanline

stereo, 136
reconstruct 3D distance image with multigrid stereo,

136
reconstruct 3D distance with focus images, 171
reconstruct 3D information with sheet of light, 157
reconstruct 3D information with stereo (binocular),

130
reconstruct 3D information with stereo (multi-view),

141
reconstruct 3D point from lines of sight, 137
reconstruct uncalibrated 3D information via sheet of

light, 159
rectification, 79
rectify image of ruled surface, 223
rectify image with user-specific rectification grid,

225
rectify image(s), 80
rectify image(s) for stereo, 127
rectify images for mosaicking, 202
relative camera pose from RANSAC point matching,

139
remove artifacts of sheet-of-light results, 160
resolution of stereo vision, 120
rigid 3D transformation, 18
robot vision, 12, 175

Scheimpflug principle, 33, 121, 151
select illumination for depth from focus, 168
self-calibrate projective camera parameters, 216
set 3D coordinate system of camera setup model, 140
set calibration object for camera calibration, 67
set camera calibration parameters, 72
set image pairs of stereo model, 142
set initial camera parameters for camera calibration,

62

Index C-237

set mosaicking image pairs, 208
set observed points for camera calibration, 71
set origin of 3D pose, 21
set poses of calibration object for hand-eye calibra-

tion, 181
set poses of the robot tool for hand-eye calibration,

182
set sheet-of-light model parameter, 158
set up calibrated mosaicking, 191
set up camera for depth from focus, 165
set up depth from focus application, 165
set up sheet-of-light system, 147
set up stereo camera system, 120
sheet of light (laser triangulation), 147
sheet-of-light result, 159
solve depth from focus problems, 172
special applications for depth from focus, 173
speed up 3D matching (shape-based), 99
speed up depth from focus, 165
standard lens for depth from focus, 174
stereo (binocular), 124
stereo (multi-view), 139
stereo vision

background information, 117
overview, 117

suitable objects for depth from focus, 169
supported configurations for hand-eye calibration,

175

telecentric camera, 25
tile images, 203
tilt lenses, 30, 33, 121, 151
transform 3D coordinates into pixel coordinates (pro-

jection), 78
transform 3D point into image coordinates, 26
transform 3D point into pixel coordinates (projec-

tion), 78
transform 3D shape model into pixel coordinates, 99
transform image coordinates into 3D coordinates, 76
transform image into 3D coordinates, 80
transform image plane coordinates into pixel coordi-

nates, 32
transform pixel coordinates into 3D coordinates, 78,

81, 88
transform region into 3D coordinates, 78
transform XLD contour into 3D coordinates, 78
transformation into/from world coordinates, 26
transformations using 3D homogeneous matrices, 18
transformations using 3d matrices, 14
transformations using dual quaternions and Plücker

coordinates, 22
transformations using poses, 20
translate 3D homogeneous matrix, 20
translate 3D homogeneous matrix around local axes,

20
translate 3D pose, 81

use 3D camera for sheet-of-light measuring, 162
use hand-eye system parameters, 185
user-specific calibration object, 70

world coordinate system (3D), 26
write 3D pose, 21

In
de

x

C-238 Index

	1 Introduction
	2 Basics
	2.1 3D Transformations and Poses
	2.1.1 3D Coordinates
	2.1.2 Transformations using 3D Transformation Matrices
	2.1.3 Rigid Transformations using Homogeneous Transformation Matrices
	2.1.4 Transformations using 3D Poses
	2.1.5 Transformations using Dual Quaternions and Plücker Coordinates

	2.2 Camera Model and Parameters
	2.2.1 Map 3D World Points to Pixel Coordinates
	2.2.2 Area Scan Cameras
	2.2.3 Tilt Lenses and the Scheimpflug Principle
	2.2.4 Hypercentric Lenses
	2.2.5 Line Scan Cameras

	2.3 3D Object Models
	2.3.1 Obtaining 3D Object Models
	2.3.2 Content of 3D Object Models
	2.3.3 Modifying 3D Object Models
	2.3.4 Extracting Features of 3D Object Models
	2.3.5 Matching of 3D Object Models
	2.3.6 Visualizing 3D Object Models

	3 Metric Measurements in a Specified Plane With a Single Camera
	3.1 First Example
	3.1.1 Single Image Calibration

	3.2 3D Camera Calibration
	3.2.1 Creating the Calibration Data Model
	3.2.2 Specifying Initial Values for the Internal Camera Parameters
	3.2.3 Describing the Calibration Object
	3.2.4 Observing the Calibration Object in Multiple Poses (Images)
	3.2.5 Restricting the Calibration to Specific Parameters
	3.2.6 Performing the Calibration
	3.2.7 Accessing the Results of the Calibration
	3.2.8 Deleting Observations from the Calibration Data Model
	3.2.9 Saving the Results
	3.2.10 Troubleshooting

	3.3 Transforming Image into World Coordinates and Vice Versa
	3.3.1 The Main Principle
	3.3.2 World Coordinates for Points
	3.3.3 World Coordinates for Contours
	3.3.4 World Coordinates for Regions
	3.3.5 Transforming World Coordinates into Image Coordinates
	3.3.6 Compensate for Lens Distortions Only

	3.4 Rectifying Images
	3.4.1 Transforming Images into the WCS
	3.4.2 Compensate for Lens Distortions Only

	3.5 Inspection of Non-Planar Objects

	4 3D Position Recognition of Known Objects
	4.1 Pose Estimation from Points
	4.2 Pose Estimation Using Shape-Based 3D Matching
	4.2.1 General Proceeding for Shape-Based 3D Matching
	4.2.2 Enhance the Shape-Based 3D Matching
	4.2.3 Tips and Tricks for Problem Handling

	4.3 Pose Estimation Using Surface-Based 3D Matching
	4.3.1 General Proceeding for Surface-Based 3D Matching

	4.4 Pose Estimation Using Deformable Surface-Based 3D Matching
	4.4.1 General Proceeding for Deformable Surface-Based 3D Matching

	4.5 Pose Estimation Using 3D Primitives Fitting
	4.6 Pose Estimation Using Calibrated Perspective Deformable Matching
	4.7 Pose Estimation Using Calibrated Descriptor-Based Matching
	4.8 Pose Estimation for Circles
	4.9 Pose Estimation for Rectangles

	5 3D Vision With a Stereo System
	5.1 The Principle of Stereo Vision
	5.1.1 The Setup of a Stereo Camera System
	5.1.2 Resolution of a Stereo Camera System
	5.1.3 Optimizing Focus with Tilt Lenses

	5.2 Calibrating the Stereo Camera System
	5.2.1 Creating and Configuring the Calibration Data Model
	5.2.2 Acquiring Calibration Images
	5.2.3 Observing the Calibration Object
	5.2.4 Calibrating the Cameras

	5.3 Binocular Stereo Vision
	5.3.1 Comparison of the Stereo Matching Approaches Correlation-Based, Multigrid, and Multi-Scanline Stereo
	5.3.2 Accessing the Calibration Results
	5.3.3 Acquiring Stereo Images
	5.3.4 Rectifying the Stereo Images
	5.3.5 Reconstructing 3D Information
	5.3.6 Uncalibrated Stereo Vision

	5.4 Multi-View Stereo Vision
	5.4.1 Initializing the Stereo Model
	5.4.2 Reconstructing 3D Information

	6 Laser Triangulation with Sheet of Light
	6.1 The Principle of Sheet of Light
	6.2 The Measurement Setup
	6.3 Calibrating the Sheet-of-Light Setup
	6.3.1 Calibrating the Sheet-of-Light Setup using a standard HALCON calibration plate
	6.3.2 Calibrating the Sheet-of-Light Setup Using a Special 3D Calibration Object

	6.4 Performing the Measurement
	6.4.1 Calibrated Sheet-of-Light Measurement
	6.4.2 Uncalibrated Sheet-of-Light Measurement

	6.5 Using the Score Image
	6.6 3D Cameras for Sheet of Light

	7 Depth from Focus
	7.1 The Principle of Depth from Focus
	7.1.1 Speed vs. Accuracy

	7.2 Setup
	7.2.1 Camera
	7.2.2 Illumination
	7.2.3 Object

	7.3 Working with Depth from Focus
	7.3.1 Rules for Taking Images
	7.3.2 Practical Use of Depth from Focus
	7.3.3 Volume Measurement with Depth from Focus

	7.4 Solutions for Typical Problems With DFF
	7.4.1 Calibrating Aberration

	7.5 Special Cases
	7.6 Performing Depth from Focus with a Standard Lens

	8 Robot Vision
	8.1 Supported Configurations
	8.1.1 Articulated Robot vs. SCARA Robot
	8.1.2 Camera and Calibration Plate vs. 3D Sensor and 3D Object
	8.1.3 Moving Camera vs. Stationary Camera
	8.1.4 Calibrating the Camera in Advance vs. Calibrating It During Hand-Eye Calibration

	8.2 The Principle of Hand-Eye Calibration
	8.3 Calibrating the Camera in Advance
	8.4 Preparing the Calibration Input Data
	8.4.1 Creating the Data Model
	8.4.2 Poses of the Calibration Object
	8.4.3 Poses of the Robot Tool

	8.5 Performing the Calibration
	8.6 Determine Translation in Z Direction for SCARA Robots
	8.7 Using the Calibration Data
	8.7.1 Using the Hand-Eye Calibration for Grasping (3D Alignment)
	8.7.2 How to Get the 3D Pose of the Object
	8.7.3 Example Application with a Stationary Camera: Grasping a Nut

	9 Calibrated Mosaicking
	9.1 Setup
	9.2 Approach Using a Single Calibration Plate
	9.2.1 Calibration
	9.2.2 Mosaicking

	9.3 Approach Using Multiple Calibration Plates
	9.3.1 Calibration
	9.3.2 Merging the Individual Images into One Larger Image

	10 Uncalibrated Mosaicking
	10.1 Rules for Taking Images for a Mosaic Image
	10.2 Definition of Overlapping Image Pairs
	10.3 Detection of Characteristic Points
	10.4 Matching of Characteristic Points
	10.5 Generation of the Mosaic Image
	10.6 Bundle Adjusted Mosaicking
	10.7 Spherical Mosaicking

	11 Rectification of Arbitrary Distortions
	11.1 Basic Principle
	11.2 Rules for Taking Images of the Rectification Grid
	11.3 Machine Vision on Ruled Surfaces
	11.4 Using Self-Defined Rectification Grids

	A HDevelop Procedures Used in this Solution Guide
	A.1 gen_hom_mat3d_from_three_points
	A.2 parameters_image_to_world_plane_centered
	A.3 parameters_image_to_world_plane_entire
	A.4 tilt_correction
	A.5 calc_calplate_pose_movingcam
	A.6 calc_calplate_pose_stationarycam
	A.7 define_reference_coord_system

	Index

