Labeln
Das Labeln von Daten ist eine zentrale Aufgabe für viele Deep Learning-Projekte. Hierbei fügt der Benutzer dem System Informationen darüber hinzu, wie das Problem korrekt gelöst werden soll. Je nach Methode können diese Informationen Bildklassen, Objektpositionen oder Pixelmasken sein, welche Klassen oder Instanzen zugeordnet sind.
Labeln für die Klassifikation
Das Labeln für die Klassifikation erfolgt durch einfachen Import der Bilder und die Zuordnung zur Klasse. Wenn die Bilder in entsprechend benannten Ordnern gespeichert sind, können sie beim Import auch automatisch gelabelt werden. Hier ein kurzes Video.
Labeln für die Objektdetektion
Bei der Objektdetektion erfolgt das Labeln durch das Zeichnen von Rechtecken um jedes relevante Objekt und durch die Zuweisung dieser Rechtecke zu den entsprechenden Klassen. Je nach Projektanforderung kann der Nutzer seine Daten entweder mit achsen-parallelen oder mit orientierten Rechtecken labeln. Hier ein kurzes Video.
Labeln für Segmentierung
Labeling für die semantische Segmentierung und die Instanzsegmentierung kann durch das Zeichnen von polygonalen Regionen um die relevanten Objekte erfolgen. Das Labeling für die semantische Segmentierung und die Instanzsegmentierung kann auch durch das Malen von Pixelmasken mit Pinsel und Radiergummi erfolgen, die die relevanten Objekte abdecken. Darüber hinaus gibt es mehrere Smart Labeling Tools, die das Labeln noch schneller machen. Diese Werkzeuge liefern sofortige Labeling-Vorschläge - entweder nach der Auswahl eines relevanten Bildbereichs oder wenn der Mauszeiger über einen Bildbereich bewegt wird.
Labeln für Deep OCR Training
Durch ein erneutes Training eines Deep OCR-Modells kann die Erkennungsrate von HALCONs Deep OCR noch weiter gesteigert werden. Mit dem Deep Learning Tool können selbst große Datensätze sehr effizient dafür gelabelt werden – dank der automatischen Textvorschläge für zu labelnde Wörter. Hier ein kurzes Video.
Labeln Für Global Context Anomaly Detection
Das Labeln für Global Context Anomaly Detection erfolgt durch einfachen Import der Bilder und die Zuordnung zur entsprechenden "Gut"- oder "Anomalie"-Klasse. Wenn die Bilder in entsprechend benannten Ordnern gespeichert sind, können sie beim Import auch automatisch gelabelt werden.