Kantenextraktion mit Deep Learning
Die Kantenextraktion mit Deep Learning ist eine neue und einzigartige Methode zum robusten Extrahieren von Kanten (z.B. Objektgrenzen), die hauptsächlich in zwei Anwendungsfällen genutzt wird.
Insbesondere für Szenarien, in denen eine Vielzahl von Kanten in einem Bild sichtbar ist, kann die Kantenextraktion mit nur wenigen Bildern trainiert werden, um die gewünschten Kanten zuverlässig zu extrahieren. Daher wird der Programmieraufwand stark reduziert. Außerdem ist das vorab trainierte Netzwerk von Haus aus in der Lage, Kanten bei geringem Kontrast und hohem Rauschen robust zu erkennen. Dies ermöglicht das Extrahieren von Kanten, die mit herkömmlichen Kantenerkennungsfiltern nicht identifiziert werden können.