ClassesClassesClassesClasses | | | | Operators

regiongrowing_nregiongrowing_nRegiongrowingNregiongrowing_nRegiongrowingNRegiongrowingN (Operator)


regiongrowing_nregiongrowing_nRegiongrowingNregiongrowing_nRegiongrowingNRegiongrowingN — Segment an image using regiongrowing for multi-channel images.


regiongrowing_n(MultiChannelImage : Regions : Metric, MinTolerance, MaxTolerance, MinSize : )

Herror regiongrowing_n(const Hobject MultiChannelImage, Hobject* Regions, const char* Metric, double MinTolerance, double MaxTolerance, const Hlong MinSize)

Herror T_regiongrowing_n(const Hobject MultiChannelImage, Hobject* Regions, const Htuple Metric, const Htuple MinTolerance, const Htuple MaxTolerance, const Htuple MinSize)

Herror regiongrowing_n(Hobject MultiChannelImage, Hobject* Regions, const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize)

HRegionArray HImage::RegiongrowingN(const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize) const

HRegionArray HImageArray::RegiongrowingN(const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize) const

void RegiongrowingN(const HObject& MultiChannelImage, HObject* Regions, const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize)

HRegion HImage::RegiongrowingN(const HString& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, Hlong MinSize) const

HRegion HImage::RegiongrowingN(const HString& Metric, double MinTolerance, double MaxTolerance, Hlong MinSize) const

HRegion HImage::RegiongrowingN(const char* Metric, double MinTolerance, double MaxTolerance, Hlong MinSize) const

void HOperatorSetX.RegiongrowingN(
[in] IHUntypedObjectX* MultiChannelImage, [out] IHUntypedObjectX*Regions, [in] VARIANT Metric, [in] VARIANT MinTolerance, [in] VARIANT MaxTolerance, [in] VARIANT MinSize)

IHRegionX* HImageX.RegiongrowingN(
[in] BSTR Metric, [in] VARIANT MinTolerance, [in] VARIANT MaxTolerance, [in] Hlong MinSize)

static void HOperatorSet.RegiongrowingN(HObject multiChannelImage, out HObject regions, HTuple metric, HTuple minTolerance, HTuple maxTolerance, HTuple minSize)

HRegion HImage.RegiongrowingN(string metric, HTuple minTolerance, HTuple maxTolerance, int minSize)

HRegion HImage.RegiongrowingN(string metric, double minTolerance, double maxTolerance, int minSize)


regiongrowing_nregiongrowing_nRegiongrowingNregiongrowing_nRegiongrowingNRegiongrowingN performs a multi-channel regiongrowing. The n channels give rise to an n-dimensional feature vector. Neighboring points are aggregated into the same region if the difference of their feature vectors with respect to the given metric lies in the interval [MinToleranceMinToleranceMinToleranceMinToleranceMinToleranceminTolerance, MaxToleranceMaxToleranceMaxToleranceMaxToleranceMaxTolerancemaxTolerance]. Only neighbors of the 4-neighborhood are examined. The following metrics can be used:

Let g_{A} denote the gray value in the feature vector A at point a of the image, and likewise be g_{B} the gray value in the feature vector B at point a neighboring point b. Let g(d) be the gray value with index d. Furthermore, let MinT denote MinToleranceMinToleranceMinToleranceMinToleranceMinToleranceminTolerance and MaxT denote MaxToleranceMaxToleranceMaxToleranceMaxToleranceMaxTolerancemaxTolerance.


Sum of absolute values


Euclidian distance


p - Norm with p = 3


p - Norm with p = 4


Minkowski distance


Supremum distance


Infimum distance


Variance of gray value differences


Dot product




Difference of arithmetic means


Ratio of arithmetic means


Difference of the vector lengths


Ratio of the vector lengths


Ratio of the vector lengths w.r.t the p-norm with p = n


Difference of the maximum gray values


Ratio of the maximum gray values


Difference of the minimum gray values


Ratio of the minimum gray values


Difference of the variances over all gray values (channels)


Ratio of the variances over all gray values (channels)


Difference of the sum of absolute values over all gray values (channels)


Ratio of the sum of absolute values over all gray values (channels)