affine_trans_imageT_affine_trans_imageAffineTransImageAffineTransImage (Operator)


affine_trans_imageT_affine_trans_imageAffineTransImageAffineTransImage — Apply an arbitrary affine 2D transformation to images.


affine_trans_image(Image : ImageAffineTrans : HomMat2D, Interpolation, AdaptImageSize : )

Herror T_affine_trans_image(const Hobject Image, Hobject* ImageAffineTrans, const Htuple HomMat2D, const Htuple Interpolation, const Htuple AdaptImageSize)

void AffineTransImage(const HObject& Image, HObject* ImageAffineTrans, const HTuple& HomMat2D, const HTuple& Interpolation, const HTuple& AdaptImageSize)

HImage HImage::AffineTransImage(const HHomMat2D& HomMat2D, const HString& Interpolation, const HString& AdaptImageSize) const

HImage HImage::AffineTransImage(const HHomMat2D& HomMat2D, const char* Interpolation, const char* AdaptImageSize) const

HImage HImage::AffineTransImage(const HHomMat2D& HomMat2D, const wchar_t* Interpolation, const wchar_t* AdaptImageSize) const   (Windows only)

HImage HHomMat2D::AffineTransImage(const HImage& Image, const HString& Interpolation, const HString& AdaptImageSize) const

HImage HHomMat2D::AffineTransImage(const HImage& Image, const char* Interpolation, const char* AdaptImageSize) const

HImage HHomMat2D::AffineTransImage(const HImage& Image, const wchar_t* Interpolation, const wchar_t* AdaptImageSize) const   (Windows only)

static void HOperatorSet.AffineTransImage(HObject image, out HObject imageAffineTrans, HTuple homMat2D, HTuple interpolation, HTuple adaptImageSize)

HImage HImage.AffineTransImage(HHomMat2D homMat2D, string interpolation, string adaptImageSize)

HImage HHomMat2D.AffineTransImage(HImage image, string interpolation, string adaptImageSize)


affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImage applies an arbitrary affine 2D transformation, i.e., scaling, rotation, translation, and slant (skewing), to the images given in ImageImageImageImageimage and returns the transformed images in ImageAffineTransImageAffineTransImageAffineTransImageAffineTransimageAffineTrans. The affine transformation is described by the homogeneous transformation matrix given in HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D, which can be created using the operators hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityHomMat2dIdentity, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScaleHomMat2dScale, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotateHomMat2dRotate, hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslateHomMat2dTranslate, etc., or be the result of operators like vector_angle_to_rigidvector_angle_to_rigidVectorAngleToRigidVectorAngleToRigidVectorAngleToRigid.

The components of the homogeneous transformation matrix are interpreted as follows: The row coordinate of the image corresponds to x and the column coordinate corresponds to y of the coordinate system in which the transformation matrix was defined. This is necessary to obtain a right-handed coordinate system for the image. In particular, this assures that rotations are performed in the correct direction. Note that the (x,y) order of the matrices quite naturally corresponds to the usual (row,column) order for coordinates in the image.

The domain of the input image is ignored, i.e., assumed to be the full rectangle of the image. The domain of the output image is the intersection of the transformed rectangle and the rectangle of the output image.

Generally, transformed points will lie between pixel coordinates. Therefore, an appropriate interpolation scheme must be used. The interpolation can also be used to avoid aliasing effects for scaled images. The quality and speed of the interpolation can be set by the parameter InterpolationInterpolationInterpolationInterpolationinterpolation:


Nearest-neighbor interpolation: The gray value is determined from the nearest pixel's gray value (possibly low quality, very fast).


Bilinear interpolation. The gray value is determined from the four nearest pixels through bilinear interpolation. If the affine transformation contains a scaling with a scale factor < 1, no smoothing is performed, which may cause severe aliasing effects (medium quality and run time).


Bicubic interpolation. The gray value is determined from the nearest pixels through bicubic interpolation. If the affine transformation contains a scaling with a scale factor < 1, no smoothing is performed, which may cause severe aliasing effects (high quality for enlargements, slow).


Bilinear interpolation. The gray value is determined from the four nearest pixels through bilinear interpolation. If the affine transformation contains a scaling with a scale factor < 1, a kind of mean filter is used to prevent aliasing effects (medium quality and run time).


Bilinear interpolation. The gray value is determined from the four nearest pixels through bilinear interpolation. If the affine transformation contains a scaling with a scale factor < 1, a kind of Gaussian filter is used to prevent aliasing effects (high quality, slow).

In addition, the system parameter 'int_zooming'"int_zooming""int_zooming""int_zooming""int_zooming" (see set_systemset_systemSetSystemSetSystemSetSystem) affects the accuracy of the transformation. If 'int_zooming'"int_zooming""int_zooming""int_zooming""int_zooming" is set to 'true'"true""true""true""true", the transformation for byte, int2 and uint2 images is carried out internally using fixed point arithmetic, leading to much shorter execution times. However, the accuracy of the transformed gray values is smaller in this case. For byte images, the differences to the more accurate calculation (using 'int_zooming'"int_zooming""int_zooming""int_zooming""int_zooming" = 'false'"false""false""false""false") is typically less than two gray levels. Correspondingly, for int2 and uint2 images, the gray value differences are less than 1/128 times the dynamic gray value range of the image, i.e., they can be as large as 512 gray levels if the entire dynamic range of 16 bit is used. When using fixed point arithmetic, the domain of resulting images can differ as well. Additionally, if a large scale factor is applied and a large output image is obtained, then undefined gray values at the lower and at the right image border may result. The maximum width of this border of undefined gray values can be estimated as , where S is the scale factor in one dimension and I is the size of the output image in the corresponding dimension. For real images, the parameter 'int_zooming'"int_zooming""int_zooming""int_zooming""int_zooming" does not affect the accuracy, since the internal calculations are always done using floating point arithmetic.

The size of the target image can be controlled by the parameter AdaptImageSizeAdaptImageSizeAdaptImageSizeAdaptImageSizeadaptImageSize: If set to 'true'"true""true""true""true", the size will be adapted so that no clipping occurs at the right or lower edge. If set to 'false'"false""false""false""false", the target image has the same size as the input image. Note that, independent of AdaptImageSizeAdaptImageSizeAdaptImageSizeAdaptImageSizeadaptImageSize, the image is always clipped at the left and upper edge, i.e., all image parts that have negative coordinates after the transformation are clipped.


The region of the input image is ignored.

affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImage does not use the HALCON standard coordinate system (with the origin in the center of the first pixel), but instead uses the same coordinate system as in affine_trans_pixelaffine_trans_pixelAffineTransPixelAffineTransPixelAffineTransPixel, i.e., the origin lies in the upper left corner of the first pixel. Therefore, applying affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImage corresponds to a chain of transformations (see affine_trans_pixelaffine_trans_pixelAffineTransPixelAffineTransPixelAffineTransPixel), which is applied to each point of the image (input and output pixels as homogeneous vectors). As an effect, you might get unexpected results when creating affine transformations based on coordinates that are derived from the image, e.g., by operators like area_center_grayarea_center_grayAreaCenterGrayAreaCenterGrayAreaCenterGray. For example, if you use this operator to calculate the center of gravity of a rotationally symmetric image and then rotate the image around this point using hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotateHomMat2dRotate, the resulting image will not lie on the original one. In such a case, you can compensate this effect by applying the following translations to HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D before using it in affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImage:

hom_mat2d_translate(HomMat2D, 0.5, 0.5, HomMat2DTmp) hom_mat2d_translate_local(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted) affine_trans_image(Image, ImageAffineTrans, HomMat2DAdapted, 'constant', 'false')

For an explanation of the different 2D coordinate systems used in HALCON, see the introduction of chapter Transformations / 2D Transformations.

Execution Information


ImageImageImageImageimage (input_object)  (multichannel-)image(-array) objectHImageHImageHobject (byte / int2 / uint2 / real)

Input image.

ImageAffineTransImageAffineTransImageAffineTransImageAffineTransimageAffineTrans (output_object)  (multichannel-)image(-array) objectHImageHImageHobject * (byte / int2 / uint2 / real)

Transformed image.

HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D (input_control)  hom_mat2d HHomMat2D, HTupleHTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

InterpolationInterpolationInterpolationInterpolationinterpolation (input_control)  string HTupleHTupleHtuple (string) (string) (HString) (char*)

Type of interpolation.

Default value: 'constant' "constant" "constant" "constant" "constant"

List of values: 'bicubic'"bicubic""bicubic""bicubic""bicubic", 'bilinear'"bilinear""bilinear""bilinear""bilinear", 'constant'"constant""constant""constant""constant", 'nearest_neighbor'"nearest_neighbor""nearest_neighbor""nearest_neighbor""nearest_neighbor", 'weighted'"weighted""weighted""weighted""weighted"

AdaptImageSizeAdaptImageSizeAdaptImageSizeAdaptImageSizeadaptImageSize (input_control)  string HTupleHTupleHtuple (string) (string) (HString) (char*)

Adaption of size of result image.

Default value: 'false' "false" "false" "false" "false"

List of values: 'false'"false""false""false""false", 'true'"true""true""true""true"

Example (HDevelop)

* Reduction of an image (512 x 512 Pixels) by 50%, rotation
* by 180 degrees and translation to the upper-left corner:

read_image (Image, 'ic0')

* Enlarging the part of an image in the interactively
* chosen rectangular window sector:

dev_get_window (WindowHandle)
hom_mat2d_scale(Matrix3,Height/(2.0*L2),Width/(2.0*L1), \


If the matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D represents an affine transformation (i.e., not a projective transformation), affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImage returns 2 (H_MSG_TRUE). If the input is empty the behavior can be set via set_system(::'no_object_result',<Result>:)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>). If necessary, an exception is raised.

Possible Predecessors

hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityHomMat2dIdentity, hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslateHomMat2dTranslate, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotateHomMat2dRotate, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScaleHomMat2dScale, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflectHomMat2dReflect


affine_trans_image_sizeaffine_trans_image_sizeAffineTransImageSizeAffineTransImageSizeAffineTransImageSize, zoom_image_sizezoom_image_sizeZoomImageSizeZoomImageSizeZoomImageSize, zoom_image_factorzoom_image_factorZoomImageFactorZoomImageFactorZoomImageFactor, mirror_imagemirror_imageMirrorImageMirrorImageMirrorImage, rotate_imagerotate_imageRotateImageRotateImageRotateImage, affine_trans_regionaffine_trans_regionAffineTransRegionAffineTransRegionAffineTransRegion

See also