median_rectmedian_rectMedianRectMedianRect (Operator)


median_rectmedian_rectMedianRectMedianRect — Compute a median filter with rectangular masks.


median_rect(Image : ImageMedian : MaskWidth, MaskHeight : )

Herror median_rect(const Hobject Image, Hobject* ImageMedian, const Hlong MaskWidth, const Hlong MaskHeight)

Herror T_median_rect(const Hobject Image, Hobject* ImageMedian, const Htuple MaskWidth, const Htuple MaskHeight)

void MedianRect(const HObject& Image, HObject* ImageMedian, const HTuple& MaskWidth, const HTuple& MaskHeight)

HImage HImage::MedianRect(Hlong MaskWidth, Hlong MaskHeight) const

static void HOperatorSet.MedianRect(HObject image, out HObject imageMedian, HTuple maskWidth, HTuple maskHeight)

HImage HImage.MedianRect(int maskWidth, int maskHeight)


median_rectmedian_rectMedianRectMedianRectMedianRect performs a median filter on the input image ImageImageImageImageimage with a rectangular mask of size MaskWidthMaskWidthMaskWidthMaskWidthmaskWidth × MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight and returns the filtered image in ImageMedianImageMedianImageMedianImageMedianimageMedian.

Conceptually, the median filter sorts all gray values within the mask in ascending order and then selects the median of the gray values. The median is the “middle” one of the sorted gray values, i.e., the gray value with rank (position) (MaskWidthMaskWidthMaskWidthMaskWidthmaskWidth * MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight - 1) / 2 + 1 of the sorted gray values, where the rank 1 corresponds to the smallest gray value and the rank MaskWidthMaskWidthMaskWidthMaskWidthmaskWidth * MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight corresponds to the largest gray value within the mask (see also rank_rectrank_rectRankRectRankRectRankRect).

median_rectmedian_rectMedianRectMedianRectMedianRect can be used, for example, to smooth images, to suppress unwanted objects (e.g., point-like or line-like structures) that are smaller than the mask, and can therefore be used to estimate the background illumination for a shading correction or as a preprocessing step for the dynamic threshold operation (see dyn_thresholddyn_thresholdDynThresholdDynThresholdDynThreshold).

When using a 3x3 or 5x5 filter mask, median_rectmedian_rectMedianRectMedianRectMedianRect can be executed on OpenCL devices.

For an explanation of the concept of smoothing filters see the introduction of chapter Filters / Smoothing.


If even values instead of odd values are passed in MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight or MaskWidthMaskWidthMaskWidthMaskWidthmaskWidth, median_rectmedian_rectMedianRectMedianRectMedianRect uses the next larger odd values instead.

median_rectmedian_rectMedianRectMedianRectMedianRect uses an algorithm with constant runtime per pixel, i.e., the runtime only depends on the size of the input image and not on the mask size. Therefore, for large mask sizes median_rectmedian_rectMedianRectMedianRectMedianRect is the fastest implementation of the median filter in HALCON. Depending on the computer architecture (processor type, availability of SIMD instructions like SSE2 or MMX, cache size and throughput, memory throughput), for small mask sizes the implementation used in median_imagemedian_imageMedianImageMedianImageMedianImage and rank_imagerank_imageRankImageRankImageRankImage is faster than median_rectmedian_rectMedianRectMedianRectMedianRect. Typically, this is the case for MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight 15, but can also happen for larger mask sizes, e.g., if SIMD instructions are unavailable and memory throughput is low.

Furthermore, it should be noted that median_rectmedian_rectMedianRectMedianRectMedianRect uses a recursive implementation, which internally computes the filter response on the smallest enclosing rectangle of the domain of the input image. Therefore, if the domain of the input image only covers a small fraction of the smallest enclosing rectangle, it can happen that median_imagemedian_imageMedianImageMedianImageMedianImage and rank_imagerank_imageRankImageRankImageRankImage are faster than median_rectmedian_rectMedianRectMedianRectMedianRect even for larger values of MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight.

Note that filter operators may return unexpected results if an image with a reduced domain is used as input. Please refer to the chapter Filters.

Execution Information


ImageImageImageImageimage (input_object)  (multichannel-)image(-array) objectHImageHImageHobject (byte*) *allowed for compute devices

Image to be filtered.

ImageMedianImageMedianImageMedianImageMedianimageMedian (output_object)  (multichannel-)image(-array) objectHImageHImageHobject * (byte)

Filtered image.

MaskWidthMaskWidthMaskWidthMaskWidthmaskWidth (input_control)  integer HTupleHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Width of the filter mask.

Default value: 15

List of values (for compute devices): 3, 5

Suggested values: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 31, 49, 51, 61, 71, 81, 91, 101

Typical range of values: 3 ≤ MaskWidth MaskWidth MaskWidth MaskWidth maskWidth ≤ 4095

Minimum increment: 2

Recommended increment: 2

MaskHeightMaskHeightMaskHeightMaskHeightmaskHeight (input_control)  integer HTupleHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Height of the filter mask.

Default value: 15

List of values (for compute devices): 3, 5

Suggested values: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 31, 49, 51, 61, 71, 81, 91, 101

Typical range of values: 3 ≤ MaskHeight MaskHeight MaskHeight MaskHeight maskHeight ≤ 4095

Minimum increment: 2

Recommended increment: 2


For each pixel: O(1).


If the parameter values are correct the operator median_rectmedian_rectMedianRectMedianRectMedianRect returns the value 2 (H_MSG_TRUE). The behavior in case of empty input (no input images available) is set via set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>). If necessary, an exception is raised.

Possible Predecessors


Possible Successors

thresholdthresholdThresholdThresholdThreshold, dyn_thresholddyn_thresholdDynThresholdDynThresholdDynThreshold, regiongrowingregiongrowingRegiongrowingRegiongrowingRegiongrowing


median_imagemedian_imageMedianImageMedianImageMedianImage, rank_rectrank_rectRankRectRankRectRankRect, rank_imagerank_imageRankImageRankImageRankImage

See also

gray_erosion_rectgray_erosion_rectGrayErosionRectGrayErosionRectGrayErosionRect, gray_dilation_rectgray_dilation_rectGrayDilationRectGrayDilationRectGrayDilationRect, gray_erosion_shapegray_erosion_shapeGrayErosionShapeGrayErosionShapeGrayErosionShape, gray_dilation_shapegray_dilation_shapeGrayDilationShapeGrayDilationShapeGrayDilationShape, gray_erosiongray_erosionGrayErosionGrayErosionGrayErosion, gray_dilationgray_dilationGrayDilationGrayDilationGrayDilation


S. Perreault, P. Hébert; “Median Filtering in Constant Time”; IEEE Transactions on Image Processing vol. 16, no. 9, pp. 2389-2394, 2007.
D. Cline, K.B. White, P.K. Egbert; “Fast 8-Bit Median Filtering Based On Separability”; International Conference on Image Processing, vol. V, pp. 281-284, 2007.