create_dl_layer_dense T_create_dl_layer_dense CreateDlLayerDense CreateDlLayerDense create_dl_layer_dense (Operator)
Name
create_dl_layer_dense T_create_dl_layer_dense CreateDlLayerDense CreateDlLayerDense create_dl_layer_dense
— Create a dense layer.
Signature
void CreateDlLayerDense (const HTuple& DLLayerInput , const HTuple& LayerName , const HTuple& NumOut , const HTuple& GenParamName , const HTuple& GenParamValue , HTuple* DLLayerDense )
HDlLayer HDlLayer ::CreateDlLayerDense (const HString& LayerName , Hlong NumOut , const HTuple& GenParamName , const HTuple& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerDense (const HString& LayerName , Hlong NumOut , const HString& GenParamName , const HString& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerDense (const char* LayerName , Hlong NumOut , const char* GenParamName , const char* GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerDense (const wchar_t* LayerName , Hlong NumOut , const wchar_t* GenParamName , const wchar_t* GenParamValue ) const
(Windows only)
static void HOperatorSet .CreateDlLayerDense (HTuple DLLayerInput , HTuple layerName , HTuple numOut , HTuple genParamName , HTuple genParamValue , out HTuple DLLayerDense )
HDlLayer HDlLayer .CreateDlLayerDense (string layerName , int numOut , HTuple genParamName , HTuple genParamValue )
HDlLayer HDlLayer .CreateDlLayerDense (string layerName , int numOut , string genParamName , string genParamValue )
Description
The operator create_dl_layer_dense create_dl_layer_dense CreateDlLayerDense CreateDlLayerDense CreateDlLayerDense create_dl_layer_dense
creates a dense or fully connected
layer (sometimes also called gemm) with NumOut NumOut NumOut NumOut numOut num_out
output neurons whose
handle is returned in DLLayerDense DLLayerDense DLLayerDense DLLayerDense DLLayerDense dllayer_dense
.
The parameter DLLayerInput DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
determines the feeding input layer and
expects the layer handle as value.
The parameter LayerName LayerName LayerName LayerName layerName layer_name
sets an individual layer name.
Note that if creating a model using create_dl_model create_dl_model CreateDlModel CreateDlModel CreateDlModel create_dl_model
each layer of
the created network must have a unique name.
The following generic parameters GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name
and the corresponding
values GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
are supported:
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" "msra" ,
'const' "const" "const" "const" "const" "const" .
Default: 'const' "const" "const" "const" "const" "const"
'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" :
Constant value if
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler" = 'const' "const" "const" "const" "const" "const" .
Default: 0
'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in" ,
'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" "norm_average" , or constant value (in combination with
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler" = 'msra' "msra" "msra" "msra" "msra" "msra" ).
Default: 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out"
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term" :
Determines whether the created dense
layer has a bias term ('true' "true" "true" "true" "true" "true" ) or not ('false' "false" "false" "false" "false" "false" ).
Default: 'true' "true" "true" "true" "true" "true"
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" :
Determines whether apply_dl_model apply_dl_model ApplyDlModel ApplyDlModel ApplyDlModel apply_dl_model
will include the output of this
layer in the dictionary DLResultBatch DLResultBatch DLResultBatch DLResultBatch DLResultBatch dlresult_batch
even without specifying this
layer in Outputs Outputs Outputs Outputs outputs outputs
('true' "true" "true" "true" "true" "true" ) or not ('false' "false" "false" "false" "false" "false" ).
Default: 'false' "false" "false" "false" "false" "false"
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" :
Multiplier for the learning
rate for this layer that is used during training.
If 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" is set to 0.0 , the layer is
skipped during training.
Default: 1.0
'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" :
Multiplier for the
learning rate of the bias term. The total bias learning rate is the
product of 'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" and
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" .
Default: 1.0
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" "msra" ,
'const' "const" "const" "const" "const" "const" .
Default: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier"
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
Default: 0.5
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in" , 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out" ,
'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" "norm_average" , or constant value (in combination with
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler" = 'msra' "msra" "msra" "msra" "msra" "msra" ).
Default: 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in"
Certain parameters of layers created using
create_dl_layer_dense create_dl_layer_dense CreateDlLayerDense CreateDlLayerDense CreateDlLayerDense create_dl_layer_dense
can be set and retrieved using
further operators.
The following tables give an overview, which parameters can be set
using set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and which ones can be retrieved
using get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
or get_dl_layer_param get_dl_layer_param GetDlLayerParam GetDlLayerParam GetDlLayerParam get_dl_layer_param
. Note, the
operators set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
require a model created by create_dl_model create_dl_model CreateDlModel CreateDlModel CreateDlModel create_dl_model
.
Generic Layer Parameters
set
get
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler"
'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val"
'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm"
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term"
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output"
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier"
'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias"
'num_trainable_params' "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params"
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler"
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val"
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
DLLayerInput DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
(input_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Feeding layer.
LayerName LayerName LayerName LayerName layerName layer_name
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Name of the output layer.
NumOut NumOut NumOut NumOut numOut num_out
(input_control) number →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Number of output neurons.
Default value: 100
GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name
(input_control) attribute.name(-array) →
HTuple MaybeSequence[str] HTuple Htuple (string) (string ) (HString ) (char* )
Generic input parameter names.
Default value: []
List of values: 'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" "bias_filler" , 'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" , 'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" , 'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term" , 'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" , 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" , 'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" , 'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" , 'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" , 'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
(input_control) attribute.value(-array) →
HTuple MaybeSequence[Union[int, float, str]] HTuple Htuple (string / integer / real) (string / int / long / double) (HString / Hlong / double) (char* / Hlong / double)
Generic input parameter values.
Default value: []
Suggested values: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" "msra" , 'const' "const" "const" "const" "const" "const" , 'nearest_neighbor' "nearest_neighbor" "nearest_neighbor" "nearest_neighbor" "nearest_neighbor" "nearest_neighbor" , 'bilinear' "bilinear" "bilinear" "bilinear" "bilinear" "bilinear" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in" , 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out" , 'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" "norm_average" , 'true' "true" "true" "true" "true" "true" , 'false' "false" "false" "false" "false" "false" , 1.0, 0.9, 0.0
DLLayerDense DLLayerDense DLLayerDense DLLayerDense DLLayerDense dllayer_dense
(output_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Dense layer.
Module
Deep Learning Training