train_dl_model_anomaly_datasetT_train_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset (Operator)

Name

train_dl_model_anomaly_datasetT_train_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset — Train a deep learning model for anomaly detection.

Signature

train_dl_model_anomaly_dataset( : : DLModelHandle, DLSamples, DLTrainParam : DLTrainResult)

Herror T_train_dl_model_anomaly_dataset(const Htuple DLModelHandle, const Htuple DLSamples, const Htuple DLTrainParam, Htuple* DLTrainResult)

void TrainDlModelAnomalyDataset(const HTuple& DLModelHandle, const HTuple& DLSamples, const HTuple& DLTrainParam, HTuple* DLTrainResult)

HDict HDlModel::TrainDlModelAnomalyDataset(const HDictArray& DLSamples, const HDict& DLTrainParam) const

static void HOperatorSet.TrainDlModelAnomalyDataset(HTuple DLModelHandle, HTuple DLSamples, HTuple DLTrainParam, out HTuple DLTrainResult)

HDict HDlModel.TrainDlModelAnomalyDataset(HDict[] DLSamples, HDict DLTrainParam)

def train_dl_model_anomaly_dataset(dlmodel_handle: HHandle, dlsamples: Sequence[HHandle], dltrain_param: HHandle) -> HHandle

Description

The operator train_dl_model_anomaly_datasettrain_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset performs the training of a deep learning model with 'type'"type""type""type""type"='anomaly_detection'"anomaly_detection""anomaly_detection""anomaly_detection""anomaly_detection" contained in DLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle (for deep learning models with 'type'"type""type""type""type"='gc_anomaly_detection'"gc_anomaly_detection""gc_anomaly_detection""gc_anomaly_detection""gc_anomaly_detection" see train_dl_model_batchtrain_dl_model_batchTrainDlModelBatchTrainDlModelBatchtrain_dl_model_batch).

This operator processes the full training dataset at once. This is in contrast to the operator train_dl_model_batchtrain_dl_model_batchTrainDlModelBatchTrainDlModelBatchtrain_dl_model_batch. The iterations over the dataset are performed internally by the operator. Consequently, you only need to call this operator once with the full training dataset to train your anomaly detection model.

The training dataset is handed over in the tuple of dictionaries DLSamplesDLSamplesDLSamplesDLSamplesdlsamples. See the chapter Deep Learning / Model for further information to the used dictionaries and their keys. The operator expects within the training dataset only images without anomaly to train the anomaly detection model.

The dictionary DLTrainParamDLTrainParamDLTrainParamDLTrainParamdltrain_param can be used to change the hyperparameters. The following values are supported:

The output dictionary DLTrainResultDLTrainResultDLTrainResultDLTrainResultdltrain_result contains the following values:

Attention

The operator train_dl_model_anomaly_datasettrain_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset internally calls functions that might not be deterministic. Therefore, results from multiple calls of train_dl_model_anomaly_datasettrain_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset can slightly differ, although the same input values have been used.

System requirements: To run this operator on GPU by setting 'runtime'"runtime""runtime""runtime""runtime" to 'gpu'"gpu""gpu""gpu""gpu" (see get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamget_dl_model_param), cuDNN and cuBLAS are required. For further details, please refer to the “Installation Guide”, paragraph “Requirements for Deep Learning and Deep-Learning-Based Methods”. Alternatively, this operator can also be run on CPU by setting 'runtime'"runtime""runtime""runtime""runtime" to 'cpu'"cpu""cpu""cpu""cpu".

Execution Information

Parameters

DLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle (input_control)  dl_model HDlModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Deep learning model handle.

DLSamplesDLSamplesDLSamplesDLSamplesdlsamples (input_control)  dict-array HDict, HTupleSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Tuple of Dictionaries with input images and corresponding information.

DLTrainParamDLTrainParamDLTrainParamDLTrainParamdltrain_param (input_control)  dict HDict, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Parameter for training the anomaly detection model.

Default: []

DLTrainResultDLTrainResultDLTrainResultDLTrainResultdltrain_result (output_control)  dict HDict, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Dictionary with the train result data.

Result

If the parameters are valid, the operator train_dl_model_anomaly_datasettrain_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

Possible Predecessors

read_dl_modelread_dl_modelReadDlModelReadDlModelread_dl_model, set_dl_model_paramset_dl_model_paramSetDlModelParamSetDlModelParamset_dl_model_param, get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamget_dl_model_param

Possible Successors

apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelapply_dl_model

See also

apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelapply_dl_model

Module

Foundation. This operator uses dynamic licensing (see the ``Installation Guide''). Which of the following modules is required depends on the specific usage of the operator:
Deep Learning Training