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Abstract

We introduce the MVTec Industrial 3D Object Detection
Dataset (MVTec ITODD), a public dataset for 3D object
detection and pose estimation with a strong focus on ob-
jects, settings, and requirements that are realistic for indus-
trial setups. Contrary to other 3D object detection datasets
that often represent scenarios from everyday life or mo-
bile robotic environments, our setup models industrial bin
picking and object inspection tasks that often face different
challenges. Additionally, the evaluation citeria are focused
on practical aspects, such as runtimes, memory consump-
tion, useful correctness measurements, and accuracy. The
dataset contains 28 objects with different characteristics,
arranged in over 800 scenes and labeled with around 3500
rigid 3D transformations of the object instances as ground
truth. Two industrial 3D sensors and three high-resolution
grayscale cameras observe the scene from different angles,
allowing to evaluate methods that operate on a variety of
different modalities. We initially evaluate 5 different meth-
ods on the dataset. Even though some show good results,
there is plenty of room for improvement. The dataset and
the results are publicly available1, and we invite others to
submit results for evaluation and for optional inclusion in
the result lists on the dataset’s website.

1. Introduction
Public datasets are a vital tool for the computer and ma-

chine vision research community. For researchers, they al-
low a fair and easy comparison with prior art without the
need to either acquire one’s own dataset or to evaluate all
prior art methods oneself. For users, datasets help to quickly
get an overview over the state of the art in a particular field.

As large-scale datasets become increasingly available,
evaluation against them and obtaining reasonable results

1www.mvtec.com/company/research/datasets/

becomes increasingly important for the publication of new
methods. Therefore, indirectly, datasets and their evaluation
criteria can steer the direction of research and shape the re-
quirements for new methods. It is thus even more important
to have datasets that represent realistic scenarios, with eval-
uation criteria that focus not only on overall performance,
but also on practical issues such as parameter selection and
computational costs.

Quite often, the objects and setups of previous datasets
for 3D object detection model environments from house-
holds, offices, or mobile robot applications such as ware-
house navigation. While these scenarios are important from
both a research and application point of view, we found that
industrial applications, such as bin picking or surface and
defect inspection, have quite different characteristics that
are not modeled by the existing datasets. This includes dif-
ferent 3D shapes, different kinds of sensors and modalities,
and different kinds of object placements. As a result, meth-
ods that perform well on existing datasets sometimes show
quite different results when applied to industrial scenarios.

Because of the above-mentioned shortcomings, we in-
troduce a new dataset, the MVTec Industrial 3D Object De-
tection Dataset for the detection and pose estimation of 3D
objects, which strongly focuses on industrial scenarios. The
dataset contains 28 rigid objects with different shapes and
surface characteristics, arranged in over 800 scenes, labeled
with their rigid 3D transformation as ground truth. The
scenes are observed by two industrial 3D sensors and three
grayscale cameras, allowing to evaluate methods that work
on 3D, image, or combined modalities. Grayscale cameras
were chosen since they are much more prominent in indus-
trial setups. The objects sometimes are observed alone and
sometimes in a heap to simulate bin picking.

For the evaluation procedure, we focus on properties that
are important for practical applications. This includes com-
paring the full 3D rigid transformation instead of just a
bounding box, in a symmetry-aware manner, as well as ex-
plicitly including computational costs in the form of train-



ing runtime, model size, detection runtime, and memory
consumption.

The dataset is available for download. While some of the
ground truth transformations are also available, most are not
made publicly available to prevent overfitting methods with
excessive parameter tuning. For evaluation, the results can
be uploaded and optionally be included in the result list of
the website.

2. Related Work
Several datasets for 3D object detection were introduced

in the past. For a comprehensive review over RGB-D re-
lated datasets, please refer to the work of Firman [5]. An-
other discussion of a subset of those datasets that are espe-
cially relevant to 3D pose estimation can be found in the
Work of Hodaň et al. [7].

Since the introduction of the Primesense sensor family,
especially in the form of Microsoft’s Kinect v1 and Asus
Xtion, several datasets were acquired using these sensors.
We belive that even though this sensor class allows an inex-
pensive and rapid acquisition of RGB-D data and was im-
portant for the progress of 3D and multimodal object detec-
tors, its characteristics are less relevant for industrial scenar-
ios, where typically different kinds of 3D sensors are used.
Additionally, the RGB-camera uses a Bayer filter, which
makes accurate and sub-pixel precise edge extraction dif-
ficult due to demosaicing effects.

Recently, Hodaň et al. [7] introduced the T-LESS
dataset, a challenging dataset of textureless objects, ar-
ranged in close proximity, and acquired with a Primesense
and an RGB sensor. T-LESS has a similar focus as the
dataset introduced in this work and is similar in design and
evaluation. Contrary to it, our dataset features objects with
wider characteristics (especially regarding planarity, size
and complexity) and sensors with a stronger industrial fo-
cus.

3. The MVTec ITODD Dataset
The overall target was to realistically cover as many ap-

plications as possible. For this, multiple sensors and objects
were selected, and objects were arranged in different ways
to cover single-instance (conveyor belt, surface inspection),
multiple-instance (bin picking), and cluttered scenarios.

Sensors Each scene is observed by two industrial stereo
3D cameras and three grayscale cameras. All sensors were
arranged such that their field of view was approximately the
same and calibrated to obtain their intrinsic parameters as
well as their relative poses.

• High-Quality 3D: A multi-shot, wide-baseline 3D
stereo sensor, providing a range (Z) image, X and Y

images, as well as a grayscale image with the same
viewpoint as the range image. The sensor uses mul-
tiple random projected patterns and reconstructs the
scene using a spacetime stereo approach with an ac-
curacy of around 100 µm.

• Low-Quality 3D: Similar to the High-Quality 3D sen-
sor, but with a shorter baseline, a wider field of view,
and fewer shots per scene. Because of this, the recon-
struction is noisier, with an accuracy of around 1–2
mm. While data of higher quality is always desirable,
economic constraints often lead to setups where com-
promises between cost and data quality must be made.

• Cameras: Three high-resolution cameras (≈ 8 MP,
f = 50mm) capturing grayscale images. Each scene
was captured twice, once with and once without pro-
jecting a random pattern. The images with the pro-
jected patterns can be used for stereo reconstruction.

Fig. 1 shows the images of an example scene.
Methods can use any combination of the sensors. This

allows to evaluate methods that operate on intensity images,
on range data, on 3D point clouds, or on multimodal data
alike.

Calibration The two 3D sensors were factory-calibrated.
Additionally, the two 3D sensors and the three grayscale
cameras were calibrated as described in [11], yielding a cal-
ibration error of less than 0.2 px.

Objects A total of 28 objects were selected, with diam-
eters ranging from 2.4 cm to 27 cm. The objects were se-
lected such that they cover a range of different values w.r.t.
surface reflectance, symmetry, complexity, flatness, detail,
compactness, and size. Fig. 3 shows the used objects, along
with their names. Tab. 1 lists some of the key properties of
the different objects. Multiple instances of each object are
available, and for each object, scenes with only a single and
scenes with multiple instances are available. For all objects,
manually created CAD models are available for training the
detection methods. Note that the dataset does not provide
any other training data in form of range or intensity images.

Acquisition Protocol The objects were captured in three
types of scenes: scenes containing only a single instance of
the object, without clutter; scenes containing multiple in-
stances of the object, without additional clutter; and scenes
containing both multiple instances of the target object and
clutter.

Each scene was acquired once with each of the 3D sen-
sors, and twice with each of the grayscale cameras: once



Figure 1. Example scene of the dataset from all sensors. Top row: Grayscale cameras. Bottom row: Z and grayscale image of the
High-Quality (left) and Low-Quality (right) 3D sensor.

Model Diameter [cm] Symmetries No. scenes No. instances Size ratio
adapter plate square 6.4 no 27 87 0.35
adapter plate triangular 5.1 yes 30 117 0.31
box 14.2 yes 25 75 0.49
bracket big 13.9 yes 48 161 0.72
bracket planar 15.9 yes 39 177 0.02
bracket screw 8.5 no 30 132 0.37
cap 3.9 yes 33 180 0.93
car rim 6.9 yes 34 131 0.59
clamp big 9.5 yes 27 63 0.49
clamp small 5.6 no 21 144 0.30
connector planar 13.8 yes 27 75 0.02
cylinder 10.8 yes 18 105 0.40
engine part bearing 12.8 no 27 72 0.41
engine part cooler round 10.3 yes 36 132 0.47
engine part cooler square 11.4 no 33 96 0.83
engine part cover 19.3 no 21 30 0.35
filter 7.8 yes 30 72 0.67
fuse 10.8 yes 35 100 0.52
handle 12.1 yes 30 177 0.08
injection pump 12.2 no 30 72 0.39
multi bracket 17.1 no 39 129 0.37
punched rail 26.7 no 23 65 0.08
screw 5.7 yes 9 48 0.30
screw black 6.5 yes 24 105 0.50
star 4.9 yes 54 381 0.12
tee connector 6.7 no 39 186 0.39
thread 5.6 yes 24 72 0.38
washer 2.4 yes 6 306 0.08

Table 1. Object list with properties. A list of the 28 objects in the dataset, along with some of their properties. Size ratio is the ratio of
the smallest to the largest side of an axis-aligned bounding box around the model, indicating the planarity of the object.



Figure 2. Annotated picture of the setup. The top shows the
two 3D sensors and the three grayscale cameras that were used for
acquisition. The sensors were static and their relative position cal-
ibrated. Below, the object placement area is visible. A calibrated
turn table was used to transfer the ground truth between scenes by
using a total of three turntable rotations per placement.

with and once without a random projected pattern. The ob-
jects were arranged on a turntable with calibrated move-
ment. Multiple scenes were acquired for each arrangement
by turning the table. This allowed the transfer of ground
truth between the rotations.

Ground Truth The ground truth was labeled using a
semi-manual approach based on the 3D data of the high-
quality 3D sensor. Each object instance was approximately
segmented by hand, followed by several iterations of man-
ually running ICP2, tuning its parameters and refining the
start pose were performed until both a good score and a
visually correct result was obtained. The corresponding
ground truth poses were transfered to the scenes obtained
by rotating the turntable by using the calibrated turn table
positions.

2We used the implementation available in the CloudCompare library,
http://www.danielgm.net/cc/, which is different from the im-
plementation used in the methods we evaluated to avoid any bias.

4. Evaluation Criteria
Pose Industrial manipulation and inspection tasks usually
require an exact rigid 3D transformation between the scene
and the model. In order to evaluate the practical usefulness
of the results, we refrain from using bounding box or sur-
face overlaps as correctness measure and use a pose-based
evaluation instead. When comparing a detected pose with
a ground truth pose, we use the maximum distance a point
on the model surface is away from its ground truth location,
normalized by the size of the model.

Formally, given a model represented by a set of points
M ⊂ <3 and its diameter diam(M) = maxv1,v2∈M |v1 −
v2|2, two transformations T1 and T2 have the distance

dP (T1, T2) =
maxx∈M |T1x− T2x|2

diam(M)
(1)

This is similar to the average distance measure in [6], but in-
variant against different samplings and internal complexity
of the model. Due to the normalization, it is also invariant
w.r.t. scalings and model size, allowing a comparison of the
quality of matches between different objects.

We additionally measure the accuracy of the translation
of the model’s center point cM as

dT (T1, T2) = |T1cM − T2cM |2 (2)

and the error in the rotation as

dR(T1, T2) = ∠(T−11 T2) (3)

where ∠(T ) is the rotation angle of the rotational part of T .
Different applications have different requirements w.r.t

the accuracy of the detected poses. For example, surface
defect detection requires a very accurate pose, while grasp-
ing an object with a vacuum suction actuator might work
even if the pose is somewhat off. To account for this, we
use different thresholds of dP when classifying the correct-
ness of results.

Symmetries Since some of the objects exhibit strong ro-
tational or discrete symmetries that the object detection
methods cannot possibly detect, we exclude such symme-
tries from the evaluation. If a model M has a set of symme-
try transformations SM , with I ∈ SM and

∀T ∈ SM :M ≈ TM, (4)

the distance measure becomes

dP (T1, T2) = argmin
S∈SM

maxx∈M |T1x− T2Sx|2
diam(M)

(5)

The errors in translation and rotation are handled accord-
ingly. We model two kind of symmetries: continous rota-
tional symmetries, for objects such as cylinder or cap, and



adapter plate square adapter plate triangular box bracket big

bracket planar bracket screw cap car rim

clamp big clamp small connector plate cylinder
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Figure 3. Images of the 28 objects used in the dataset. The objects were selected to show different characteristics in terms of surface
(reflecting vs. lambertian), symmetry (no vs. full rotational symmetry), complexity (primitive shapes vs. complex objects), flatness (flat
vs. voluminous), details (no vs. very fine details on surface), compactness (long vs. compact), and size (diameters from 2.4 cm to 27 cm)



sets of discrete symmetric poses for objects such as box
or car rim. Objects that are almost symmetric and where
sensors were unable to distinguish the symmetries, such as
screw and screw black, are also modeled to be rotationally
symmetric.

Contrary to the evaluation criteria proposed in [8], which
measures relative surface overlaps of detection and ground
truth, we decided to include symmetry explicitly. We be-
lieve that for applications such as bin picking, detecting
an incorrect pose, even if almost indistinguishable from the
correct point for the particular viewpoint, is dangerous from
an application perspective. It also allows methods that oper-
ate on the data of multiple sensors to take advantage of those
different viewing directions to resolve such ambiguity.

Detection Rate To compute the detection rate given a set
of results R, a set of ground truth transformations GT , and
a threshold t for the distance dP , we first search, for each re-
sult transformation TR ∈ R, the best matching ground truth
TGT ∈ GT where dP (TR, TGT ) < t. If multiple ground
truth transformations match this criterion, the one with the
smallest distance is used. Each ground truth transformation
is assigned to at most one result transformation, again the
one with the smallest distance. Because of this, if R con-
tains duplicate results, only the best is classified as correct,
while all others are false positives.

The detection rate used in the evaluation is then com-
puted as the ratio of correctly matched transformations inR
vs. the total number of ground truth transformations, |GT |.
The false positive rate is the number of unmatched result
transformations vs. the total number of result transforma-
tions |R|.

Computational Costs and Metadata Since runtime is an
important factor in real-world applications, for all evalu-
ated methods, we also measure the training and detection
times, model size, and memory requirements during detec-
tion. Since runtimes can heavily depend on the system, the
used components (CPU vs. GPU) and the effort spent for
the implementation, we also provide a free-form text field
where the implementation and the used system can be sum-
marized.

Priors, Parameters, and Evaluation Rules To enable an
evaluation that is as realistic and fair as possible, evalua-
tions on the dataset should obey the following rules regard-
ing their priors and parametrization.

• Per-Model Parameters: Parameters may be set on a
per-model basis. All parameters that are not shared
between models must be summarized in text form to
obtain an overview of the usability of the method.

• Per-Scene Parameters: Parameters may not be tuned
on a per-scene basis, i.e., the detection parameters
must be constant for a particular object. The only prior
allowed on a per-scene basis is the number of instances
contained in the scene, which is provided along with
the dataset. The background plane may be removed
from scenes, if documented accordingly.

• Provided Parameters: In addition to the CAD models
of the objects and the number of instances per scene,
the distance range (i.e., the range of z-values of the
model centers within the scene) are provided to allow
training methods that require, for example, synthetic
renderings of the object. Note that the rotation range
is not limited.

Of course, evaluations can be valuable even when not
strictly adhering to the rules above. Such cases, however,
should be summarized, and the corresponding descriptions
will be published along with the results on the website.

5. Evaluation
Along with the dataset, this work also provides evalua-

tions of several methods on the dataset. This allows a first
insight into the difficulty of the dataset given state of the art
detection methods. Note that additional and more detailed
results will be found on the dataset’s website.

5.1. Evaluated Methods

Shape-Based 3D Matching (S2D) An optimized imple-
mentation of [12], which detects 3D objects in 2D images.
A template-based matching approach is used, where the
object is rendered from multiple viewpoints to create tem-
plates for different orientations. This method does not use
any 3D image data. Poses where flat objects are seen from
the side are excluded during the training to avoid degener-
ated views. Additionally, the image contrast and the number
of trained image levels were adapted on a per-object basis.

Point-Pair Voting (PP3D) An optimized implementation
of [4], which detects objects in 3D point clouds by using
a local Hough transform and point pairs as features. The
method was augmented with a point-to-plane ICP [2]. Iden-
tical parameters were used for all models, both during train-
ing and evaluation. For detection, the background plane was
removed from the scenes.

Point-Pair Voting with 3D edges (PP3D-E) Based
on [4], we implemented a method that, similar to [3], per-
forms the voting not only for pairs of surface points, but also
for pairs of surface and edge points. This allows the detec-
tor to optimize both the surface overlap and the alignment
of 3D edges. Identical parameters were used for all models,
both during training and evaluation.



Point-Pair Voting with 3D edges and 2D refinement
(PP3D-E-2D) As another extension of the previous method,
we extended the refinement (ICP) step such that it not only
optimizes the 3D point-to-plane distances between scene
and model, but also the alignment of reprojected model
edges and 2D image edges, i.e., a multimodal refinement.
Identical parameters were used for all models, both during
training and evaluation.

Efficient RANSAC (RANSAC) We evaluated the publicly
available variant of [9, 10], using the 3D data only. For
the evaluation, the background plane was removed to ob-
tain reasonable runtimes. The method also includes an ICP
refinement. Identical parameters were used for all models
and scenes.

For RANSAC, we used the publicly available C++-
implementation. For the other methods, the optimized im-
plementations of the HALCON machine vision library [1],
version 13.0.1, were used.

5.2. Results

As a main result, Tab. 2 shows the Top-1 detection rate
of the different methods, evaluated on different thresholds
between detected transformations and ground truth. Tab. 3
shows the corresponding detection rate of the first n results,
where n is the number of labeled instances per scene. Note
that the Top-n-rate is significantly lower than the Top-1-rate,
indicating that it is much easier to find any instance instead
of all instances.

Tab. 4 shows the mean error of translation and rotation
for all transformations labeled as correct, using different
thresholds.

Fig. 4 shows the Top-1 detection rate vs. the average
detection time per labeled instance. Note that even though
the PP3D-E method has a good performance, it also has a
rather high runtime, making it less qualified for real-world
applications. Note also that all methods used the CPU only.

When comparing the performance of S2D to that of the
other methods, it should be noted that it is the only evaluated
approach that does not use 3D input data. Furthermore, we
noticed that although many results of the S2D seemed to be
correct when projecting them into the images, they resulted
in large values for dP , and hence were classified as false
positives. The main reason is that because of the large focal
lengths, a small error in the estimated object scale in the
image or a small error in the size of the CAD model result
in large errors in the z coordinate.

6. Discussion
This paper introduces the MVTec Industrial 3D Object

Detection Dataset (MVTec ITODD) for 3D object detection
and pose estimation. The extensive dataset is focused on

Method < 1% < 3% < 5% < 10%

PP3D 0.07 0.48 0.66 0.75
PP3D-E 0.11 0.51 0.68 0.77
PP3D-E-2D 0.04 0.42 0.66 0.81
S2D 0.02 0.20 0.34 0.47
RANSAC 0.07 0.23 0.33 0.43

Table 2. Top-1 detection rate. For each method, the best result
(according to each method’s confidence score) for each object and
scene is used and compared against the ground truth. The match
is classified as correct, if the smallest distance dP to any of the
ground truth transformations is closer than the given threshold.
Different thresholds simulate different requirements on the accu-
racy of the match. This simluates a pick any strategy, where for
further processing, at least one instace must be detected.

Method < 1% < 3% < 5% < 10%

PP3D 0.04 0.29 0.45 0.53
PP3D-E 0.05 0.34 0.50 0.59
PP3D-E-2D 0.02 0.26 0.46 0.61
S2D 0.01 0.10 0.17 0.25
RANSAC 0.03 0.13 0.19 0.27

Table 3. Top-N detection rate. For each object and scene, the
first N results are compared against the ground truth, where N is
the number of labeled object instances in the scene (see Tab. 2 for
details).
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Figure 4. Matching time vs. average detection rate. The average
detection time per instance is plotted against the Top-1 detection
rate. A threshold of dP < 5% was used for classifying a result as
correct.

modelling industrial applications: Setup, sensors, objects
and evaluation criteria were selected to most closely match
scenarios found in real-world applications.

A first evaluation on five different methods shows their
characteristics, strengths, and weaknesses for different ob-
ject classes. It also highlights that the dataset is not yet
maxed out by existing methods, and that there is plenty of



dP < 1% dP < 3% dP < 5% dP < 10%
Method dT dR dT dR dT dR dT dR

PP3D 0.55% 0.31° 1.28% 0.58° 1.61% 0.72° 1.95% 0.91°
PP3D-E 0.58% 0.32° 1.20% 0.54° 1.54% 0.69° 1.83% 0.87°
PP3D-E-2D 0.59% 0.40° 1.25% 0.75° 1.68% 0.97° 2.06% 1.25°
S2D 0.56% 0.31° 1.41% 0.58° 1.89% 0.81° 2.64% 1.12°
RANSAC 0.48% 0.31° 1.06% 0.54° 1.39% 0.83° 1.99% 1.52°

Table 4. Top-1 pose error. For each method, the first result for each object and scene is used and compared against the ground truth,
yielding the relative translation error dT and the rotation error dR. For most methods, the main source of error comes from the translation,
not from the rotation.

Model PP3D PP3D-E PP3D-E-2D S2D RANSAC
adapter plate square 0.58 0.58 0.56 0.06 0.11
adapter plate triangular 0.64 0.63 0.44 0.01 0.07
box 0.69 0.78 0.80 0.39 0.44
bracket big 0.53 0.65 0.65 0.38 0.51
bracket planar 0.15 0.23 0.24 0.37 0.20
bracket screw 0.02 0.04 0.02 0.00 0.05
cap 0.82 0.80 0.69 0.06 0.00
car rim 0.48 0.49 0.36 0.07 0.42
clamp big 0.46 0.39 0.38 0.51 0.33
clamp small 0.28 0.31 0.26 0.09 0.00
connector planar 0.24 0.37 0.38 0.30 0.46
cylinder 0.72 0.73 0.74 0.24 0.86
engine part bearing 0.85 0.87 0.75 0.34 0.00
engine part cooler round 0.81 0.84 0.67 0.74 0.26
engine part cooler square 0.44 0.52 0.39 0.00 0.12
engine part cover 0.85 0.83 0.82 0.43 0.67
filter 0.10 0.10 0.05 0.01 0.24
fuse 0.07 0.54 0.41 0.82 0.00
handle 0.60 0.67 0.73 0.03 0.21
injection pump 0.71 0.74 0.60 0.08 0.33
multi bracket 0.65 0.78 0.77 0.45 0.53
punched rail 0.37 0.38 0.39 0.06 0.36
screw 0.30 0.17 0.03 0.00 0.00
screw black 0.30 0.16 0.19 0.07 0.32
star 0.36 0.60 0.64 0.25 0.29
tee connector 0.78 0.66 0.55 0.16 0.07
thread 0.33 0.30 0.33 0.12 0.36
washer 0.04 0.03 0.04 0.00 0.00

Table 5. Top-N detection rates per object. A threshold of dP < 5% was used for classifying a result as correct.

room for improvement.
We hope that this dataset encourages others to consider

industrial challenges during the design and development of
new methods, and that it helps to identify well-performing
existing methods.
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and X. Zabulis. T-LESS: An RGB-D dataset for 6d pose esti-
mation of texture-less objects. In IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 880–888.
IEEE, 2017. 2
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