dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold (Operator)

Name

dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold — Segment an image using a local threshold.

Signature

dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

Herror dyn_threshold(const Hobject OrigImage, const Hobject ThresholdImage, Hobject* RegionDynThresh, double Offset, const char* LightDark)

Herror T_dyn_threshold(const Hobject OrigImage, const Hobject ThresholdImage, Hobject* RegionDynThresh, const Htuple Offset, const Htuple LightDark)

void DynThreshold(const HObject& OrigImage, const HObject& ThresholdImage, HObject* RegionDynThresh, const HTuple& Offset, const HTuple& LightDark)

HRegion HImage::DynThreshold(const HImage& ThresholdImage, const HTuple& Offset, const HString& LightDark) const

HRegion HImage::DynThreshold(const HImage& ThresholdImage, double Offset, const HString& LightDark) const

HRegion HImage::DynThreshold(const HImage& ThresholdImage, double Offset, const char* LightDark) const

HRegion HImage::DynThreshold(const HImage& ThresholdImage, double Offset, const wchar_t* LightDark) const   ( Windows only)

static void HOperatorSet.DynThreshold(HObject origImage, HObject thresholdImage, out HObject regionDynThresh, HTuple offset, HTuple lightDark)

HRegion HImage.DynThreshold(HImage thresholdImage, HTuple offset, string lightDark)

HRegion HImage.DynThreshold(HImage thresholdImage, double offset, string lightDark)

def dyn_threshold(orig_image: HObject, threshold_image: HObject, offset: Union[int, float], light_dark: str) -> HObject

Description

dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold selects from the input image those regions in which the pixels fulfill a threshold condition. Let g_{o} = g_{OrigImageOrigImageOrigImageorigImageorig_image}, and g_{t} = g_{ThresholdImageThresholdImageThresholdImagethresholdImagethreshold_image}. Then the condition for LightDarkLightDarkLightDarklightDarklight_dark = 'light'"light""light""light""light" is: For LightDarkLightDarkLightDarklightDarklight_dark = 'dark'"dark""dark""dark""dark" the condition is: For LightDarkLightDarkLightDarklightDarklight_dark = 'equal'"equal""equal""equal""equal" it is: Finally, for LightDarkLightDarkLightDarklightDarklight_dark = 'not_equal'"not_equal""not_equal""not_equal""not_equal" it is:

Typically, the threshold images are smoothed versions of the original image (e.g., by applying mean_imagemean_imageMeanImageMeanImagemean_image, binomial_filterbinomial_filterBinomialFilterBinomialFilterbinomial_filter, gauss_filtergauss_filterGaussFilterGaussFiltergauss_filter, etc.). Then the effect of dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold is similar to applying thresholdthresholdThresholdThresholdthreshold to a highpass-filtered version of the original image (see highpass_imagehighpass_imageHighpassImageHighpassImagehighpass_image).

With dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold, contours of an object can be extracted, where the objects' size (diameter) is determined by the mask size of the lowpass filter and the amplitude of the objects' edges:

The larger the mask size is chosen, the larger the found regions become. As a rule of thumb, the mask size should be about twice the diameter of the objects to be extracted. It is important not to set the parameter OffsetOffsetOffsetoffsetoffset to zero because in this case too many small regions will be found (noise). Values between 5 and 40 are a useful choice. The larger OffsetOffsetOffsetoffsetoffset is chosen, the smaller the extracted regions become.

All points of the input image fulfilling the above condition are stored jointly in one region. If necessary, the connected components can be obtained by calling connectionconnectionConnectionConnectionconnection.

Attention

If OffsetOffsetOffsetoffsetoffset is chosen from -1 to 1 usually a very noisy region is generated, requiring large storage. If OffsetOffsetOffsetoffsetoffset is chosen too large (> 60, say) it may happen that no points fulfill the threshold condition (i.e., an empty region is returned). If OffsetOffsetOffsetoffsetoffset is chosen too small (< -60, say) it may happen that all points fulfill the threshold condition (i.e., a full region is returned).

Execution Information

Parameters

OrigImageOrigImageOrigImageorigImageorig_image (input_object)  singlechannelimage(-array) objectHImageHObjectHObjectHobject (byte / int2 / uint2 / int4 / real)

Input image.

ThresholdImageThresholdImageThresholdImagethresholdImagethreshold_image (input_object)  singlechannelimage(-array) objectHImageHObjectHObjectHobject (byte / int2 / uint2 / int4 / real)

Image containing the local thresholds.

RegionDynThreshRegionDynThreshRegionDynThreshregionDynThreshregion_dyn_thresh (output_object)  region(-array) objectHRegionHObjectHObjectHobject *

Segmented regions.

OffsetOffsetOffsetoffsetoffset (input_control)  number HTupleUnion[int, float]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Offset applied to ThresholdImage.

Default: 5.0

Suggested values: 1.0, 3.0, 5.0, 7.0, 10.0, 20.0, 30.0

Value range: -255.0 ≤ Offset Offset Offset offset offset ≤ 255.0 (lin)

Minimum increment: 0.01

Recommended increment: 5

LightDarkLightDarkLightDarklightDarklight_dark (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Extract light, dark or similar areas?

Default: 'light' "light" "light" "light" "light"

List of values: 'dark'"dark""dark""dark""dark", 'equal'"equal""equal""equal""equal", 'light'"light""light""light""light", 'not_equal'"not_equal""not_equal""not_equal""not_equal"

Example (HDevelop)

* Looking for regions with the diameter D
mean_image(Image,Mean,D*2+1,D*2+1)
dyn_threshold(Image,Mean,Seg,5,'light')
connection(Seg,Regions)

Example (C)

/* Looking for regions with the diameter D */
mean_image(Image,&Mean,D*2+1,D*2+1);
dyn_threshold(Image,Mean,&Seg,5.0,"light");
connection(Seg,&Region);

Example (C++)

#include "HIOStream.h"
#if !defined(USE_IOSTREAM_H)
using namespace std;
#endif
#include "HalconCpp.h"
using namespace Halcon;

int main (int argc, char *argv[])
{
  HImage   image ("monkey"),
           mean;
  HWindow  win;

  if (argc != 2)
  {
    cout << "Using: " << argv[0] << " <diameter>" << endl;
    exit (1);
  }

  int d = atoi (argv[1]) * 2 + 1;

  image.Display (win);

  mean = image.MeanImage (d, d);

  HRegionArray seg = image.DynThreshold (mean, 5.0, "light");
  HRegionArray reg = seg.Connection ();

  win.SetColored (12);
  reg.Display (win);
  win.Click ();

  return (0);
}

Example (HDevelop)

* Looking for regions with the diameter D
mean_image(Image,Mean,D*2+1,D*2+1)
dyn_threshold(Image,Mean,Seg,5,'light')
connection(Seg,Regions)

Complexity

Let A be the area of the input region. Then the runtime complexity is O(A).

Result

dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold returns 2 ( H_MSG_TRUE) if all parameters are correct. The behavior with respect to the input images and output regions can be determined by setting the values of the flags 'no_object_result'"no_object_result""no_object_result""no_object_result""no_object_result", 'empty_region_result'"empty_region_result""empty_region_result""empty_region_result""empty_region_result", and 'store_empty_region'"store_empty_region""store_empty_region""store_empty_region""store_empty_region" with set_systemset_systemSetSystemSetSystemset_system. If necessary, an exception is raised.

Possible Predecessors

mean_imagemean_imageMeanImageMeanImagemean_image, smooth_imagesmooth_imageSmoothImageSmoothImagesmooth_image, binomial_filterbinomial_filterBinomialFilterBinomialFilterbinomial_filter, gauss_filtergauss_filterGaussFilterGaussFiltergauss_filter

Possible Successors

connectionconnectionConnectionConnectionconnection, select_shapeselect_shapeSelectShapeSelectShapeselect_shape, reduce_domainreduce_domainReduceDomainReduceDomainreduce_domain, select_grayselect_graySelectGraySelectGrayselect_gray, rank_regionrank_regionRankRegionRankRegionrank_region, dilation1dilation1Dilation1Dilation1dilation1, openingopeningOpeningOpeningopening, erosion1erosion1Erosion1Erosion1erosion1

Alternatives

check_differencecheck_differenceCheckDifferenceCheckDifferencecheck_difference, thresholdthresholdThresholdThresholdthreshold

See also

highpass_imagehighpass_imageHighpassImageHighpassImagehighpass_image, sub_imagesub_imageSubImageSubImagesub_image

Module

Foundation