skeletonskeletonSkeletonSkeletonskeleton (Operator)

Name

skeletonskeletonSkeletonSkeletonskeleton — Compute the skeleton of a region.

Signature

skeleton(Region : Skeleton : : )

Herror skeleton(const Hobject Region, Hobject* Skeleton)

Herror T_skeleton(const Hobject Region, Hobject* Skeleton)

void Skeleton(const HObject& Region, HObject* Skeleton)

HRegion HRegion::Skeleton() const

static void HOperatorSet.Skeleton(HObject region, out HObject skeleton)

HRegion HRegion.Skeleton()

def skeleton(region: HObject) -> HObject

Description

skeletonskeletonSkeletonSkeletonskeleton computes the skeleton, i.e., the medial axis of the input regions. The skeleton is constructed in a way that each point on it can be seen as the center point of a circle with the largest radius possible while still being completely contained in the region.

Execution Information

Parameters

RegionRegionRegionregionregion (input_object)  region(-array) objectHRegionHObjectHObjectHobject

Region to be thinned.

SkeletonSkeletonSkeletonskeletonskeleton (output_object)  region(-array) objectHRegionHObjectHObjectHobject *

Resulting skeleton.

Number of elements: Skeleton == Region

Complexity

Let F be the area of the enclosing rectangle of the input region. Then the runtime complexity is O(F) (per region).

Result

skeletonskeletonSkeletonSkeletonskeleton returns 2 ( H_MSG_TRUE) if all parameters are correct. The behavior in case of empty input (no regions given) can be set via set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>) and the behavior in case of an empty input region via set_system('empty_region_result',<Result>)set_system("empty_region_result",<Result>)SetSystem("empty_region_result",<Result>)SetSystem("empty_region_result",<Result>)set_system("empty_region_result",<Result>). If necessary, an exception is raised.

Possible Predecessors

sobel_ampsobel_ampSobelAmpSobelAmpsobel_amp, edges_imageedges_imageEdgesImageEdgesImageedges_image, bandpass_imagebandpass_imageBandpassImageBandpassImagebandpass_image, thresholdthresholdThresholdThresholdthreshold, hysteresis_thresholdhysteresis_thresholdHysteresisThresholdHysteresisThresholdhysteresis_threshold

Possible Successors

junctions_skeletonjunctions_skeletonJunctionsSkeletonJunctionsSkeletonjunctions_skeleton, pruningpruningPruningPruningpruning

Alternatives

morph_skeletonmorph_skeletonMorphSkeletonMorphSkeletonmorph_skeleton, thinningthinningThinningThinningthinning

See also

gray_skeletongray_skeletonGraySkeletonGraySkeletongray_skeleton, sobel_ampsobel_ampSobelAmpSobelAmpsobel_amp, edges_imageedges_imageEdgesImageEdgesImageedges_image, robertsrobertsRobertsRobertsroberts, bandpass_imagebandpass_imageBandpassImageBandpassImagebandpass_image, thresholdthresholdThresholdThresholdthreshold

References

Eckardt, U. “Verdünnung mit Perfekten Punkten”, Proceedings 10. DAGM-Symposium, IFB 180, Zurich, 1988

Module

Foundation