create_dl_layer_batch_normalization T_create_dl_layer_batch_normalization CreateDlLayerBatchNormalization CreateDlLayerBatchNormalization create_dl_layer_batch_normalization (Operator)
Name
create_dl_layer_batch_normalization T_create_dl_layer_batch_normalization CreateDlLayerBatchNormalization CreateDlLayerBatchNormalization create_dl_layer_batch_normalization
— Create a batch normalization layer.
Signature
void CreateDlLayerBatchNormalization (const HTuple& DLLayerInput , const HTuple& LayerName , const HTuple& Momentum , const HTuple& Epsilon , const HTuple& Activation , const HTuple& GenParamName , const HTuple& GenParamValue , HTuple* DLLayerBatchNorm )
HDlLayer HDlLayer ::CreateDlLayerBatchNormalization (const HString& LayerName , const HTuple& Momentum , double Epsilon , const HString& Activation , const HTuple& GenParamName , const HTuple& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerBatchNormalization (const HString& LayerName , const HString& Momentum , double Epsilon , const HString& Activation , const HString& GenParamName , const HString& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerBatchNormalization (const char* LayerName , const char* Momentum , double Epsilon , const char* Activation , const char* GenParamName , const char* GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerBatchNormalization (const wchar_t* LayerName , const wchar_t* Momentum , double Epsilon , const wchar_t* Activation , const wchar_t* GenParamName , const wchar_t* GenParamValue ) const
(
Windows only)
static void HOperatorSet .CreateDlLayerBatchNormalization (HTuple DLLayerInput , HTuple layerName , HTuple momentum , HTuple epsilon , HTuple activation , HTuple genParamName , HTuple genParamValue , out HTuple DLLayerBatchNorm )
HDlLayer HDlLayer .CreateDlLayerBatchNormalization (string layerName , HTuple momentum , double epsilon , string activation , HTuple genParamName , HTuple genParamValue )
HDlLayer HDlLayer .CreateDlLayerBatchNormalization (string layerName , string momentum , double epsilon , string activation , string genParamName , string genParamValue )
Description
The operator create_dl_layer_batch_normalization create_dl_layer_batch_normalization CreateDlLayerBatchNormalization CreateDlLayerBatchNormalization create_dl_layer_batch_normalization
creates a batch
normalization layer whose handle is returned in DLLayerBatchNorm DLLayerBatchNorm DLLayerBatchNorm DLLayerBatchNorm dllayer_batch_norm
.
Batch normalization is used to improve the performance and stability of a
neural network during training.
The mean and variance of each input activation are calculated for each batch
and the input values are transformed to have zero mean and unit variance.
Moreover, a linear scale and shift transformation is learned. During training,
to take all samples into account, the batch-wise calculated mean
and variance values are combined with a Momentum Momentum Momentum momentum momentum
into running mean
and running variance, where
denotes the iteration index:
To affect the mean and variance values you can set the following options
for Momentum Momentum Momentum momentum momentum
:
Given number:
For example: 0.9 . This is the default and recommended option.
Restriction: 0
Momentum Momentum Momentum momentum momentum
1
'auto' "auto" "auto" "auto" "auto" :
Combines mean and variance values by a
cumulative moving average. This is only recommended in case the parameters of all previous
layers in the network are frozen, i.e., have a learning rate of 0 .
'freeze' "freeze" "freeze" "freeze" "freeze" :
Stops the adjustment of the mean and
variance and their values stay fixed. In this case, the mean and variance are used
during training for normalizing a batch, analogously to how the batch normalization
operates during inference. The parameters of the linear scale and shift
transformation, however, remain learnable.
Epsilon Epsilon Epsilon epsilon epsilon
is a small offset to the variance and
used to control the numerical stability. Usually its default value should be
adequate.
The parameter DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
determines the feeding input layer.
The parameter LayerName LayerName LayerName layerName layer_name
sets an individual layer name.
Note that if creating a model using create_dl_model create_dl_model CreateDlModel CreateDlModel create_dl_model
each layer of
the created network must have a unique name.
The parameter Activation Activation Activation activation activation
determines whether an activation is
performed after the batch normalization in order to optimize the runtime
performance.
It is not possible to specify a leaky ReLU or a sigmoid activation function.
Use create_dl_layer_activation create_dl_layer_activation CreateDlLayerActivation CreateDlLayerActivation create_dl_layer_activation
instead.
The following generic parameters GenParamName GenParamName GenParamName genParamName gen_param_name
and the corresponding
values GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
are supported:
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'xavier' "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" ,
'const' "const" "const" "const" "const" .
Default: 'const' "const" "const" "const" "const"
'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" :
Constant value.
Restriction: 'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" must be set to
'const' "const" "const" "const" "const" .
Default: 0
'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" ,
'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" , or constant value (in combination with
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" = 'msra' "msra" "msra" "msra" "msra" ).
Default: 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out"
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" :
Determines whether the created
batch normalization layer has a bias term ('true' "true" "true" "true" "true" ) or not
('false' "false" "false" "false" "false" ).
Default: 'true' "true" "true" "true" "true"
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" :
Determines whether apply_dl_model apply_dl_model ApplyDlModel ApplyDlModel apply_dl_model
will include the output of this
layer in the dictionary DLResultBatch DLResultBatch DLResultBatch DLResultBatch dlresult_batch
even without specifying this
layer in Outputs Outputs Outputs outputs outputs
('true' "true" "true" "true" "true" ) or not ('false' "false" "false" "false" "false" ).
Default: 'false' "false" "false" "false" "false"
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" :
Multiplier for the learning
rate for this layer that is used during training.
If 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" is set to 0.0 , the layer is
skipped during training.
Default: 1.0
'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" :
Multiplier for the
learning rate of the bias term. The total bias learning rate is the
product of 'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" and
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" .
Default: 1.0
'upper_bound' "upper_bound" "upper_bound" "upper_bound" "upper_bound" :
Float value defining an upper bound
for a rectified linear unit.
If the activation layer is part of a model, which has been created using
create_dl_model create_dl_model CreateDlModel CreateDlModel create_dl_model
, the upper bound can be unset. To do so, use
set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and set an empty tuple for
'upper_bound' "upper_bound" "upper_bound" "upper_bound" "upper_bound" .
Default: []
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'xavier' "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" ,
'const' "const" "const" "const" "const" .
Default: 'const' "const" "const" "const" "const"
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
Default: 1.0
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" , 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" ,
'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" , or constant value (in combination with
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" = 'msra' "msra" "msra" "msra" "msra" ).
Default: 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in"
Certain parameters of layers created using this operator
create_dl_layer_batch_normalization create_dl_layer_batch_normalization CreateDlLayerBatchNormalization CreateDlLayerBatchNormalization create_dl_layer_batch_normalization
can be set and retrieved using
further operators.
The following tables give an overview, which parameters can be set
using set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and which ones can be retrieved
using get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
or get_dl_layer_param get_dl_layer_param GetDlLayerParam GetDlLayerParam get_dl_layer_param
. Note, the
operators set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
require a model created by create_dl_model create_dl_model CreateDlModel CreateDlModel create_dl_model
.
Generic Layer Parameters
set
get
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler"
x
x
'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val"
x
x
'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm"
x
x
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term"
x
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output"
x
x
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier"
x
x
'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias"
x
x
'num_trainable_params' "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params"
x
'upper_bound' "upper_bound" "upper_bound" "upper_bound" "upper_bound"
x
x
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler"
x
x
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val"
x
x
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
x
x
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
(input_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Feeding layer.
LayerName LayerName LayerName layerName layer_name
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Name of the output layer.
Momentum Momentum Momentum momentum momentum
(input_control) string →
HTuple Union[float, str] HTuple Htuple (string / real) (string / double) (HString / double) (char* / double)
Momentum.
Default:
0.9
List of values:
0.9, 0.99, 0.999, 'auto' "auto" "auto" "auto" "auto" , 'freeze' "freeze" "freeze" "freeze" "freeze"
Epsilon Epsilon Epsilon epsilon epsilon
(input_control) number →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Variance offset.
Default:
0.0001
Activation Activation Activation activation activation
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Optional activation function.
Default:
'none'
"none"
"none"
"none"
"none"
List of values:
'none' "none" "none" "none" "none" , 'relu' "relu" "relu" "relu" "relu"
GenParamName GenParamName GenParamName genParamName gen_param_name
(input_control) attribute.name(-array) →
HTuple MaybeSequence[str] HTuple Htuple (string) (string ) (HString ) (char* )
Generic input parameter names.
Default:
[]
List of values:
'bias_filler' "bias_filler" "bias_filler" "bias_filler" "bias_filler" , 'bias_filler_const_val' "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" "bias_filler_const_val" , 'bias_filler_variance_norm' "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" "bias_filler_variance_norm" , 'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" , 'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" , 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" , 'learning_rate_multiplier_bias' "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" "learning_rate_multiplier_bias" , 'upper_bound' "upper_bound" "upper_bound" "upper_bound" "upper_bound" , 'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" , 'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" , 'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
(input_control) attribute.value(-array) →
HTuple MaybeSequence[Union[int, float, str]] HTuple Htuple (string / integer / real) (string / int / long / double) (HString / Hlong / double) (char* / Hlong / double)
Generic input parameter values.
Default:
[]
Suggested values:
'xavier' "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" , 'const' "const" "const" "const" "const" , 'nearest_neighbor' "nearest_neighbor" "nearest_neighbor" "nearest_neighbor" "nearest_neighbor" , 'bilinear' "bilinear" "bilinear" "bilinear" "bilinear" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" , 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" , 'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" , 'true' "true" "true" "true" "true" , 'false' "false" "false" "false" "false" , 1.0, 0.9, 0.0
DLLayerBatchNorm DLLayerBatchNorm DLLayerBatchNorm DLLayerBatchNorm dllayer_batch_norm
(output_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Batch normalization layer.
Example (HDevelop)
create_dl_layer_input ('input', [224,224,3], [], [], DLLayerInput)
* In practice, one typically sets ['bias_term'], ['false'] for a convolution
* that is directly followed by a batch normalization layer.
create_dl_layer_convolution (DLLayerInput, 'conv1', 3, 1, 1, 64, 1, \
'none', 'none', ['bias_term'], ['false'], \
DLLayerConvolution)
create_dl_layer_batch_normalization (DLLayerConvolution, 'bn1', 0.9, \
0.0001, 'none', [], [], \
DLLayerBatchNorm)
Possible Predecessors
create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
Possible Successors
create_dl_layer_activation create_dl_layer_activation CreateDlLayerActivation CreateDlLayerActivation create_dl_layer_activation
,
create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
References
Sergey Ioffe and Christian Szegedy,
"Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift,"
Proceedings of the 32nd International Conference on Machine Learning,
(ICML) 2015, Lille, France, 6-11 July 2015, pp. 448--456
Module
Deep Learning Training