create_uncalib_descriptor_modelT_create_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelcreate_uncalib_descriptor_model (Operator)
Name
create_uncalib_descriptor_modelT_create_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelcreate_uncalib_descriptor_model
— Prepare a descriptor model for interest point matching.
Signature
void CreateUncalibDescriptorModel(const HObject& Template, const HTuple& DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, const HTuple& Seed, HTuple* ModelID)
void HDescriptorModel::HDescriptorModel(const HImage& Template, const HString& DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
void HDescriptorModel::HDescriptorModel(const HImage& Template, const char* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
void HDescriptorModel::HDescriptorModel(const HImage& Template, const wchar_t* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
(
Windows only)
void HDescriptorModel::CreateUncalibDescriptorModel(const HImage& Template, const HString& DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
void HDescriptorModel::CreateUncalibDescriptorModel(const HImage& Template, const char* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
void HDescriptorModel::CreateUncalibDescriptorModel(const HImage& Template, const wchar_t* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed)
(
Windows only)
HDescriptorModel HImage::CreateUncalibDescriptorModel(const HString& DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed) const
HDescriptorModel HImage::CreateUncalibDescriptorModel(const char* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed) const
HDescriptorModel HImage::CreateUncalibDescriptorModel(const wchar_t* DetectorType, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, Hlong Seed) const
(
Windows only)
static void HOperatorSet.CreateUncalibDescriptorModel(HObject template, HTuple detectorType, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, HTuple seed, out HTuple modelID)
public HDescriptorModel(HImage template, string detectorType, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, int seed)
void HDescriptorModel.CreateUncalibDescriptorModel(HImage template, string detectorType, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, int seed)
HDescriptorModel HImage.CreateUncalibDescriptorModel(string detectorType, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, int seed)
def create_uncalib_descriptor_model(template: HObject, detector_type: str, detector_param_name: Sequence[str], detector_param_value: Sequence[Union[int, float, str]], descriptor_param_name: Sequence[str], descriptor_param_value: Sequence[Union[int, float, str]], seed: int) -> HHandle
Description
The operator create_uncalib_descriptor_modelcreate_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelcreate_uncalib_descriptor_model
prepares a
descriptor model of an image region, which is passed in the image
TemplateTemplateTemplatetemplatetemplate
, that can be used for descriptor-based matching.
By a subsequent call of find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
a
projective 2D transformation (homography) from TemplateTemplateTemplatetemplatetemplate
to
a search image can be obtained. The center of gravity of the domain
region in TemplateTemplateTemplatetemplatetemplate
is used as an origin of the model. In
contrast to create_calib_descriptor_modelcreate_calib_descriptor_modelCreateCalibDescriptorModelCreateCalibDescriptorModelcreate_calib_descriptor_model
, no calibrated
camera is needed and hence the result of a subsequent matching is
a 2D projection. Note that the part of the object that is visible in the
TemplateTemplateTemplatetemplatetemplate
image needs to be planar.
The descriptor model describes a set of points of interest. It
stores their locations and discriminative descriptions of their local
gray value neighborhood. The interest point extraction is parametrized
by DetectorTypeDetectorTypeDetectorTypedetectorTypedetector_type
, DetectorParamNameDetectorParamNameDetectorParamNamedetectorParamNamedetector_param_name
and
DetectorParamValueDetectorParamValueDetectorParamValuedetectorParamValuedetector_param_value
. The respective descriptor around the
interest points is parametrized by DescriptorParamNameDescriptorParamNameDescriptorParamNamedescriptorParamNamedescriptor_param_name
and
DescriptorParamValueDescriptorParamValueDescriptorParamValuedescriptorParamValuedescriptor_param_value
. The parameter SeedSeedSeedseedseed
seeds the
random number generator, which is used during the construction of the
descriptor implemented with randomized ferns. The returned
ModelIDModelIDModelIDmodelIDmodel_id
is a reference to the generated
descriptor model. This model can be used for an efficient
detection of instances of the learned template with
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
, allowing perspective
transformation between model and search image. As descriptor-based
matching relies on the existence of stable and discriminative points
of interest, the object to be detected must be textured, but not in a
repetitive way.
Detector parameters
As mentioned, the detector is used for the extraction of stable
interest points within the image. By the parameter
DetectorTypeDetectorTypeDetectorTypedetectorTypedetector_type
, it is possible to select the interest point
operator to be used. Currently, points_lepetitpoints_lepetitPointsLepetitPointsLepetitpoints_lepetit
,
points_harrispoints_harrisPointsHarrisPointsHarrispoints_harris
, and its binomial approximation
points_harris_binomialpoints_harris_binomialPointsHarrisBinomialPointsHarrisBinomialpoints_harris_binomial
are supported ('lepetit', 'harris',
'harris_binomial'). In case of templates or search images with a
low contrast, one of the Harris point operators should be used.
Depending on the selected DetectorTypeDetectorTypeDetectorTypedetectorTypedetector_type
, appropriate
parameter names and values can be set in DetectorParamNameDetectorParamNameDetectorParamNamedetectorParamNamedetector_param_name
and DetectorParamValueDetectorParamValueDetectorParamValuedetectorParamValuedetector_param_value
.
Possible parameter names for DetectorParamNameDetectorParamNameDetectorParamNamedetectorParamNamedetector_param_name
and corresponding
default values are:
- 'lepetit'"lepetit""lepetit""lepetit""lepetit" :
-
['radius'"radius""radius""radius""radius", 'check_neighbor'"check_neighbor""check_neighbor""check_neighbor""check_neighbor",
'min_check_neighbor_diff'"min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff", 'min_score'"min_score""min_score""min_score""min_score",
'subpix'"subpix""subpix""subpix""subpix"]
[ 3, 1, 15, 30, 'interpolation'][ 3, 1, 15, 30, "interpolation"][ 3, 1, 15, 30, "interpolation"][ 3, 1, 15, 30, "interpolation"][ 3, 1, 15, 30, "interpolation"]
- 'harris'"harris""harris""harris""harris" :
-
['sigma_grad'"sigma_grad""sigma_grad""sigma_grad""sigma_grad", 'sigma_smooth'"sigma_smooth""sigma_smooth""sigma_smooth""sigma_smooth", 'alpha'"alpha""alpha""alpha""alpha",
'threshold'"threshold""threshold""threshold""threshold"]
[0.7, 2.0, 0.08, 1000]
- 'harris_binomial'"harris_binomial""harris_binomial""harris_binomial""harris_binomial" :
-
['mask_size_grd'"mask_size_grd""mask_size_grd""mask_size_grd""mask_size_grd", 'mask_size_smooth'"mask_size_smooth""mask_size_smooth""mask_size_smooth""mask_size_smooth",
'alpha'"alpha""alpha""alpha""alpha", 'threshold'"threshold""threshold""threshold""threshold", 'subpix'"subpix""subpix""subpix""subpix"]
[5, 15, 0.08, 1000, 'on'][5, 15, 0.08, 1000, "on"][5, 15, 0.08, 1000, "on"][5, 15, 0.08, 1000, "on"][5, 15, 0.08, 1000, "on"]
Further details on the meaning of those parameters can be found in the
descriptions of points_harrispoints_harrisPointsHarrisPointsHarrispoints_harris
, points_harris_binomialpoints_harris_binomialPointsHarrisBinomialPointsHarrisBinomialpoints_harris_binomial
and points_lepetitpoints_lepetitPointsLepetitPointsLepetitpoints_lepetit
, respectively. If an empty tuple is passed
or a parameter is not provided in DetectorParamNameDetectorParamNameDetectorParamNamedetectorParamNamedetector_param_name
, the above
mentioned default values are taken.
While adjusting the operator parameters it should be aimed that a set of
50 to 450 feature points is extracted (depending on the texture and size
of TemplateTemplateTemplatetemplatetemplate
), which are uniformly distributed over the
template's ROI. Therefore, it is recommended to run the point operator
of choice in advance and visualize the results by
gen_cross_contour_xldgen_cross_contour_xldGenCrossContourXldGenCrossContourXldgen_cross_contour_xld
. In most cases it is sufficient to use the
default setting.
Descriptor parameters
A point descriptor is a classifier, which builds characteristic
descriptions of the gray-value neighborhood for interest points.
Currently the descriptor is implemented with the so-called
randomized ferns, which learns the polarity of the
gray-value differences of pairs of pixels certain at random
locations in the surrounding area of the interest point. The descriptor
is later used in find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
to classify
interest points in the search image, or in other words: to identify
(match) potential model points in the search image.
The descriptor needs to store only the projectively stable
interest points (which will appear in many projective views of the
template). To assess the stability of the interest points,
a simulation is performed: TemplateTemplateTemplatetemplatetemplate
undergoes many affine
transformations and points that can be extracted in most of the views
are considered stable. The affine transformations are a good
approximation of the projective transformations within a local
neighborhood of the interest points.
The following descriptor parameters can be set with
DescriptorParamNameDescriptorParamNameDescriptorParamNamedescriptorParamNamedescriptor_param_name
and DescriptorParamValueDescriptorParamValueDescriptorParamValuedescriptorParamValuedescriptor_param_value
:
Descriptor size parameters:
- 'depth'"depth""depth""depth""depth":
-
depth of a classification fern. A deeper randomized fern can better
discriminate interest points. However, the memory requirement for the
fern grows by a factor 2 to the power of 'depth'"depth""depth""depth""depth".
Typical values are [5 .. 11],
default value is 11.
- 'number_ferns'"number_ferns""number_ferns""number_ferns""number_ferns":
-
number of fern structures used. Using more ferns increases the
recognition robustness, however it also increases the runtime of
the matching. If the memory needed for the descriptor should be small,
many ferns with only a small depth should be used (e.g.,
'number_ferns'"number_ferns""number_ferns""number_ferns""number_ferns"=150, 'depth'"depth""depth""depth""depth"=5).
If detection speed is more important, fewer ferns of larger depth
should be used (e.g., 'number_ferns'"number_ferns""number_ferns""number_ferns""number_ferns"=10,
'depth'"depth""depth""depth""depth"=11).
Typical values are [1 .. 150],
default value is 30.
- 'patch_size'"patch_size""patch_size""patch_size""patch_size":
side length of a quadratic neighborhood describing a point of interest.
Too large values of this parameter can influence the run time.
Typical values are [15 .. 33],
default value is 17.
Summing up, the parameters 'depth'"depth""depth""depth""depth", 'number_ferns'"number_ferns""number_ferns""number_ferns""number_ferns"
and 'patch_size'"patch_size""patch_size""patch_size""patch_size" allow a transparent control over detection
robustness, speed and memory consumption.
Simulation parameters:
- 'tilt'"tilt""tilt""tilt""tilt":
-
switches on or off the projective
transformations during the simulation phase. When switched on, the
robustness of the model is improved and objects with bigger tilts can
be found. When switched off, training time can be significantly reduced
and the model is still able to recognize projectively invariant objects.
Possible values are ['on'"on""on""on""on", 'off'"off""off""off""off"],
default value is 'on'"on""on""on""on".
- 'min_rot'"min_rot""min_rot""min_rot""min_rot":
-
minimal angle of rotation around
the normal vector of TemplateTemplateTemplatetemplatetemplate
.
Typical values are [-180 .. 0],
default value is -180.
- 'max_rot'"max_rot""max_rot""max_rot""max_rot":
-
maximal angle of rotation around
the normal vector of TemplateTemplateTemplatetemplatetemplate
.
Typical values are [0 .. 180],
default value is 180.
- 'min_scale'"min_scale""min_scale""min_scale""min_scale":
-
minimal scale of
TemplateTemplateTemplatetemplatetemplate
.
Typical values are [0.1 .. 1.0],
default value is 0.5.
- 'max_scale'"max_scale""max_scale""max_scale""max_scale":
maximal scale of
TemplateTemplateTemplatetemplatetemplate
.
Typical values are [1.0 .. 3.5],
default value is 1.4.
The parameters 'min_rot'"min_rot""min_rot""min_rot""min_rot", 'max_rot'"max_rot""max_rot""max_rot""max_rot",
'min_scale'"min_scale""min_scale""min_scale""min_scale", and 'max_scale'"max_scale""max_scale""max_scale""max_scale" allow to manually set
which affine transformed views of the template are used to train the
descriptor. Setting these parameters is useful to reduce training time
especially in combination with the parameter 'tilt'"tilt""tilt""tilt""tilt". Be aware
that these parameters have direct influence on the results of
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
and therefore have to be set
carefully. If, for example, the range of rotation is restricted from
'min_rot'"min_rot""min_rot""min_rot""min_rot" = -10 to 'max_rot'"max_rot""max_rot""max_rot""max_rot" = 10 it is not possible
to find views of TemplateTemplateTemplatetemplatetemplate
rotated by an angle outside that
scope. A limited training range requires less ferns / ferns' depths to
find TemplateTemplateTemplatetemplatetemplate
. In such a case the number and depth of the
ferns can be further reduced, which optimizes the model.
Remarks
Please note that depending on your hardware, the processing time for
training the randomized ferns can vary between several seconds to some
minutes. Therefore, a once trained model can be saved and loaded with
write_descriptor_modelwrite_descriptor_modelWriteDescriptorModelWriteDescriptorModelwrite_descriptor_model
and read_descriptor_modelread_descriptor_modelReadDescriptorModelReadDescriptorModelread_descriptor_model
.
The parameters and the location of the final descriptor points can be
determined with get_descriptor_model_paramsget_descriptor_model_paramsGetDescriptorModelParamsGetDescriptorModelParamsget_descriptor_model_params
and
get_descriptor_model_pointsget_descriptor_model_pointsGetDescriptorModelPointsGetDescriptorModelPointsget_descriptor_model_points
.
create_uncalib_descriptor_modelcreate_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelcreate_uncalib_descriptor_model
stores the detector type,
detector parameters, and descriptor parameters, which are used in
every succeeding call of find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
.
The reference point (origin) of the model is the center of gravity
of the template's ROI. Its coordinates can be changed by
set_descriptor_model_originset_descriptor_model_originSetDescriptorModelOriginSetDescriptorModelOriginset_descriptor_model_origin
.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.
Parameters
TemplateTemplateTemplatetemplatetemplate
(input_object) singlechannelimage →
objectHImageHObjectHObjectHobject (byte / uint2)
Input image whose domain will be used to create
the model.
DetectorTypeDetectorTypeDetectorTypedetectorTypedetector_type
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
The type of the detector.
Default:
'lepetit'
"lepetit"
"lepetit"
"lepetit"
"lepetit"
List of values:
'harris'"harris""harris""harris""harris", 'harris_binomial'"harris_binomial""harris_binomial""harris_binomial""harris_binomial", 'lepetit'"lepetit""lepetit""lepetit""lepetit"
DetectorParamNameDetectorParamNameDetectorParamNamedetectorParamNamedetector_param_name
(input_control) attribute.name-array →
HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)
The detector's parameter names.
Default:
[]
List of values:
'alpha'"alpha""alpha""alpha""alpha", 'check_neighbor'"check_neighbor""check_neighbor""check_neighbor""check_neighbor", 'mask_size_grd'"mask_size_grd""mask_size_grd""mask_size_grd""mask_size_grd", 'mask_size_smooth'"mask_size_smooth""mask_size_smooth""mask_size_smooth""mask_size_smooth", 'min_check_neighbor_diff'"min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff", 'min_score'"min_score""min_score""min_score""min_score", 'radius'"radius""radius""radius""radius", 'sigma_grad'"sigma_grad""sigma_grad""sigma_grad""sigma_grad", 'sigma_smooth'"sigma_smooth""sigma_smooth""sigma_smooth""sigma_smooth", 'subpix'"subpix""subpix""subpix""subpix", 'threshold'"threshold""threshold""threshold""threshold"
DetectorParamValueDetectorParamValueDetectorParamValuedetectorParamValuedetector_param_value
(input_control) attribute.value-array →
HTupleSequence[Union[int, float, str]]HTupleHtuple (integer / real / string) (int / long / double / string) (Hlong / double / HString) (Hlong / double / char*)
Values of the detector's parameters.
Default:
[]
Suggested values:
0.08, 1, 1.2, 3, 15, 30, 1000, 'on'"on""on""on""on", 'off'"off""off""off""off", 'none'"none""none""none""none", 'interpolation'"interpolation""interpolation""interpolation""interpolation"
DescriptorParamNameDescriptorParamNameDescriptorParamNamedescriptorParamNamedescriptor_param_name
(input_control) attribute.name-array →
HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)
The descriptor's parameter names.
Default:
[]
List of values:
'depth'"depth""depth""depth""depth", 'max_rot'"max_rot""max_rot""max_rot""max_rot", 'max_scale'"max_scale""max_scale""max_scale""max_scale", 'min_rot'"min_rot""min_rot""min_rot""min_rot", 'min_scale'"min_scale""min_scale""min_scale""min_scale", 'number_ferns'"number_ferns""number_ferns""number_ferns""number_ferns", 'patch_size'"patch_size""patch_size""patch_size""patch_size", 'tilt'"tilt""tilt""tilt""tilt"
DescriptorParamValueDescriptorParamValueDescriptorParamValuedescriptorParamValuedescriptor_param_value
(input_control) attribute.value-array →
HTupleSequence[Union[int, float, str]]HTupleHtuple (integer / real / string) (int / long / double / string) (Hlong / double / HString) (Hlong / double / char*)
Values of the descriptor's parameters.
Default:
[]
Suggested values:
0.5, 1.4, 11, 21, 30, -180, 180, 'on'"on""on""on""on", 'off'"off""off""off""off"
SeedSeedSeedseedseed
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
The seed for the random number generator.
Default:
42
ModelIDModelIDModelIDmodelIDmodel_id
(output_control) descriptor_model →
HDescriptorModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
The handle to the descriptor model.
Possible Predecessors
points_lepetitpoints_lepetitPointsLepetitPointsLepetitpoints_lepetit
,
points_harrispoints_harrisPointsHarrisPointsHarrispoints_harris
,
reduce_domainreduce_domainReduceDomainReduceDomainreduce_domain
Possible Successors
get_descriptor_model_paramsget_descriptor_model_paramsGetDescriptorModelParamsGetDescriptorModelParamsget_descriptor_model_params
,
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
See also
get_descriptor_model_paramsget_descriptor_model_paramsGetDescriptorModelParamsGetDescriptorModelParamsget_descriptor_model_params
,
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelfind_uncalib_descriptor_model
References
V. Lepetit and P. Fua: “Keypoint Recognition using Randomized Trees.“
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28,
Nr. 9, pp. 1465-1479, 2006.
M. Ozuysal, P. Fua, and V. Lepetit: “Fast Keypoint Recognition in Ten Lines
of Code.“
In Proceedings of Conference on Computer Vision and Pattern Recognition,
2007.
Module
Matching