match_essential_matrix_ransacT_match_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac (Operator)

Name

match_essential_matrix_ransacT_match_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac — Compute the essential matrix for a pair of stereo images by automatically finding correspondences between image points.

Signature

match_essential_matrix_ransac(Image1, Image2 : : Rows1, Cols1, Rows2, Cols2, CamMat1, CamMat2, GrayMatchMethod, MaskSize, RowMove, ColMove, RowTolerance, ColTolerance, Rotation, MatchThreshold, EstimationMethod, DistanceThreshold, RandSeed : EMatrix, CovEMat, Error, Points1, Points2)

Herror T_match_essential_matrix_ransac(const Hobject Image1, const Hobject Image2, const Htuple Rows1, const Htuple Cols1, const Htuple Rows2, const Htuple Cols2, const Htuple CamMat1, const Htuple CamMat2, const Htuple GrayMatchMethod, const Htuple MaskSize, const Htuple RowMove, const Htuple ColMove, const Htuple RowTolerance, const Htuple ColTolerance, const Htuple Rotation, const Htuple MatchThreshold, const Htuple EstimationMethod, const Htuple DistanceThreshold, const Htuple RandSeed, Htuple* EMatrix, Htuple* CovEMat, Htuple* Error, Htuple* Points1, Htuple* Points2)

void MatchEssentialMatrixRansac(const HObject& Image1, const HObject& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HTuple& CamMat1, const HTuple& CamMat2, const HTuple& GrayMatchMethod, const HTuple& MaskSize, const HTuple& RowMove, const HTuple& ColMove, const HTuple& RowTolerance, const HTuple& ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HTuple& EstimationMethod, const HTuple& DistanceThreshold, const HTuple& RandSeed, HTuple* EMatrix, HTuple* CovEMat, HTuple* Error, HTuple* Points1, HTuple* Points2)

HHomMat2D HImage::MatchEssentialMatrixRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat1, const HHomMat2D& CamMat2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HString& EstimationMethod, const HTuple& DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, HTuple* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::MatchEssentialMatrixRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat1, const HHomMat2D& CamMat2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::MatchEssentialMatrixRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat1, const HHomMat2D& CamMat2, const char* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::MatchEssentialMatrixRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat1, const HHomMat2D& CamMat2, const wchar_t* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const   ( Windows only)

HHomMat2D HHomMat2D::MatchEssentialMatrixRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HString& EstimationMethod, const HTuple& DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, HTuple* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HHomMat2D::MatchEssentialMatrixRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HHomMat2D::MatchEssentialMatrixRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat2, const char* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const

HHomMat2D HHomMat2D::MatchEssentialMatrixRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HHomMat2D& CamMat2, const wchar_t* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* CovEMat, double* Error, HTuple* Points1, HTuple* Points2) const   ( Windows only)

static void HOperatorSet.MatchEssentialMatrixRansac(HObject image1, HObject image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HTuple camMat1, HTuple camMat2, HTuple grayMatchMethod, HTuple maskSize, HTuple rowMove, HTuple colMove, HTuple rowTolerance, HTuple colTolerance, HTuple rotation, HTuple matchThreshold, HTuple estimationMethod, HTuple distanceThreshold, HTuple randSeed, out HTuple EMatrix, out HTuple covEMat, out HTuple error, out HTuple points1, out HTuple points2)

HHomMat2D HImage.MatchEssentialMatrixRansac(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HHomMat2D camMat1, HHomMat2D camMat2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, HTuple rotation, HTuple matchThreshold, string estimationMethod, HTuple distanceThreshold, int randSeed, out HTuple covEMat, out HTuple error, out HTuple points1, out HTuple points2)

HHomMat2D HImage.MatchEssentialMatrixRansac(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HHomMat2D camMat1, HHomMat2D camMat2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, double rotation, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple covEMat, out double error, out HTuple points1, out HTuple points2)

HHomMat2D HHomMat2D.MatchEssentialMatrixRansac(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HHomMat2D camMat2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, HTuple rotation, HTuple matchThreshold, string estimationMethod, HTuple distanceThreshold, int randSeed, out HTuple covEMat, out HTuple error, out HTuple points1, out HTuple points2)

HHomMat2D HHomMat2D.MatchEssentialMatrixRansac(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HHomMat2D camMat2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, double rotation, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple covEMat, out double error, out HTuple points1, out HTuple points2)

def match_essential_matrix_ransac(image_1: HObject, image_2: HObject, rows_1: Sequence[Union[float, int]], cols_1: Sequence[Union[float, int]], rows_2: Sequence[Union[float, int]], cols_2: Sequence[Union[float, int]], cam_mat_1: Sequence[Union[float, int]], cam_mat_2: Sequence[Union[float, int]], gray_match_method: str, mask_size: int, row_move: int, col_move: int, row_tolerance: int, col_tolerance: int, rotation: MaybeSequence[Union[float, int]], match_threshold: Union[int, float], estimation_method: str, distance_threshold: Union[float, int], rand_seed: int) -> Tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[int], Sequence[int]]

def match_essential_matrix_ransac_s(image_1: HObject, image_2: HObject, rows_1: Sequence[Union[float, int]], cols_1: Sequence[Union[float, int]], rows_2: Sequence[Union[float, int]], cols_2: Sequence[Union[float, int]], cam_mat_1: Sequence[Union[float, int]], cam_mat_2: Sequence[Union[float, int]], gray_match_method: str, mask_size: int, row_move: int, col_move: int, row_tolerance: int, col_tolerance: int, rotation: MaybeSequence[Union[float, int]], match_threshold: Union[int, float], estimation_method: str, distance_threshold: Union[float, int], rand_seed: int) -> Tuple[Sequence[float], Sequence[float], float, Sequence[int], Sequence[int]]

Description

Given a set of coordinates of characteristic points (Rows1Rows1Rows1rows1rows_1,Cols1Cols1Cols1cols1cols_1) and (Rows2Rows2Rows2rows2rows_2,Cols2Cols2Cols2cols2cols_2) in the stereo images Image1Image1Image1image1image_1 and Image2Image2Image2image2image_2 along with known internal camera parameters, specified by the camera matrices CamMat1CamMat1CamMat1camMat1cam_mat_1 and CamMat2CamMat2CamMat2camMat2cam_mat_2, match_essential_matrix_ransacmatch_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac automatically determines the geometry of the stereo setup and finds the correspondences between the characteristic points. The geometry of the stereo setup is represented by the essential matrix EMatrixEMatrixEMatrixEMatrixematrix and all corresponding points have to fulfill the epipolar constraint.

The operator match_essential_matrix_ransacmatch_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac is designed to deal with a linear camera model. The internal camera parameters are passed by the arguments CamMat1CamMat1CamMat1camMat1cam_mat_1 and CamMat2CamMat2CamMat2camMat2cam_mat_2, which are 3x3 upper triangular matrices describing an affine transformation. The relation between a vector (X,Y,1), representing the direction from the camera to the viewed 3D space point and its (projective) 2D image coordinates (col,row,1) is:

Note the column/row ordering in the point coordinates which has to be compliant with the x/y notation of the camera coordinate system. The focal length is denoted by f, are scaling factors, s describes a skew factor and indicates the principal point. Mainly, these are the elements known from the camera parameters as used for example in calibrate_camerascalibrate_camerasCalibrateCamerasCalibrateCamerascalibrate_cameras. Alternatively, the elements of the camera matrix can be described in a different way, see e.g. stationary_camera_self_calibrationstationary_camera_self_calibrationStationaryCameraSelfCalibrationStationaryCameraSelfCalibrationstationary_camera_self_calibration. Multiplied by the inverse of the camera matrices the direction vectors in 3D space are obtained from the (projective) image coordinates. For known camera matrices the epipolar constraint is given by:

The matching process is based on characteristic points, which can be extracted with point operators like points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner or points_harrispoints_harrisPointsHarrisPointsHarrispoints_harris. The matching itself is carried out in two steps: first, gray value correlations of mask windows around the input points in the first and the second image are determined and an initial matching between them is generated using the similarity of the windows in both images. Then, the RANSAC algorithm is applied to find the essential matrix that maximizes the number of correspondences under the epipolar constraint.

The size of the mask windows is MaskSizeMaskSizeMaskSizemaskSizemask_size x MaskSizeMaskSizeMaskSizemaskSizemask_size. Three metrics for the correlation can be selected. If GrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method has the value 'ssd'"ssd""ssd""ssd""ssd", the sum of the squared gray value differences is used, 'sad'"sad""sad""sad""sad" means the sum of absolute differences, and 'ncc'"ncc""ncc""ncc""ncc" is the normalized cross correlation. For details please refer to binocular_disparitybinocular_disparityBinocularDisparityBinocularDisparitybinocular_disparity. The metric is minimized ('ssd'"ssd""ssd""ssd""ssd", 'sad'"sad""sad""sad""sad") or maximized ('ncc'"ncc""ncc""ncc""ncc") over all possible point pairs. A thus found matching is only accepted if the value of the metric is below the value of MatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold ('ssd'"ssd""ssd""ssd""ssd", 'sad'"sad""sad""sad""sad") or above that value ('ncc'"ncc""ncc""ncc""ncc").

To increase the speed of the algorithm, the search area for the matching operations can be limited. Only points within a window of points are considered. The offset of the center of the search window in the second image with respect to the position of the current point in the first image is given by RowMoveRowMoveRowMoverowMoverow_move and ColMoveColMoveColMovecolMovecol_move.

If the second camera is rotated around the optical axis with respect to the first camera the parameter RotationRotationRotationrotationrotation may contain an estimate for the rotation angle or an angle interval in radians. A good guess will increase the quality of the gray value matching. If the actual rotation differs too much from the specified estimate the matching will typically fail. In this case, an angle interval should be specified, and RotationRotationRotationrotationrotation is a tuple with two elements. The larger the given interval the slower the operator is since the RANSAC algorithm is run over all angle increments within the interval.

After the initial matching is completed a randomized search algorithm (RANSAC) is used to determine the essential matrix EMatrixEMatrixEMatrixEMatrixematrix. It tries to find the essential matrix that is consistent with a maximum number of correspondences. For a point to be accepted, the distance to its corresponding epipolar line must not exceed the threshold DistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold.

The parameter EstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method decides whether the relative orientation between the cameras is of a special type and which algorithm is to be applied for its computation. If EstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method is either 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt" or 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard" the relative orientation is arbitrary. Choosing 'trans_normalized_dlt'"trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt" or 'trans_gold_standard'"trans_gold_standard""trans_gold_standard""trans_gold_standard""trans_gold_standard" means that the relative motion between the cameras is a pure translation. The typical application for this special motion case is the scenario of a single fixed camera looking onto a moving conveyor belt. In order to get a unique solution in the correspondence problem the minimum required number of corresponding points is six in the general case and three in the special, translational case.

The essential matrix is computed by a linear algorithm if 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt" or 'trans_normalized_dlt'"trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt" is chosen. With 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard" or 'trans_gold_standard'"trans_gold_standard""trans_gold_standard""trans_gold_standard""trans_gold_standard" the algorithm gives a statistically optimal result, and returns the covariance of the essential matrix CovEMatCovEMatCovEMatcovEMatcov_emat as well. Here, 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt" and 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard" stand for direct-linear-transformation and gold-standard-algorithm respectively. Note, that in general the found correspondences differ depending on the deployed estimation method.

The value ErrorErrorErrorerrorerror indicates the overall quality of the estimation procedure and is the mean Euclidean distance in pixels between the points and their corresponding epipolar lines.

Point pairs consistent with the mentioned constraints are considered to be in correspondences. Points1Points1Points1points1points_1 contains the indices of the matched input points from the first image and Points2Points2Points2points2points_2 contains the indices of the corresponding points in the second image.

For the operator match_essential_matrix_ransacmatch_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac a special configuration of scene points and cameras exists: if all 3D points lie in a single plane and additionally are all closer to one of the two cameras then the solution in the essential matrix is not unique but twofold. As a consequence both solutions are computed and returned by the operator. This means that the output parameters EMatrixEMatrixEMatrixEMatrixematrix, CovEMatCovEMatCovEMatcovEMatcov_emat and ErrorErrorErrorerrorerror are of double length and the values of the second solution are simply concatenated behind the values of the first one.

The parameter RandSeedRandSeedRandSeedrandSeedrand_seed can be used to control the randomized nature of the RANSAC algorithm, and hence to obtain reproducible results. If RandSeedRandSeedRandSeedrandSeedrand_seed is set to a positive number the operator yields the same result on every call with the same parameters because the internally used random number generator is initialized with the RandSeedRandSeedRandSeedrandSeedrand_seed. If RandSeedRandSeedRandSeedrandSeedrand_seed = 0 the random number generator is initialized with the current time. In this case the results may not be reproducible. The value set for the HALCON system variable 'seed_rand'"seed_rand""seed_rand""seed_rand""seed_rand" (see set_systemset_systemSetSystemSetSystemset_system) does not affect the results of match_essential_matrix_ransacmatch_essential_matrix_ransacMatchEssentialMatrixRansacMatchEssentialMatrixRansacmatch_essential_matrix_ransac.

Execution Information

Parameters

Image1Image1Image1image1image_1 (input_object)  singlechannelimage objectHImageHObjectHObjectHobject (byte / uint2)

Input image 1.

Image2Image2Image2image2image_2 (input_object)  singlechannelimage objectHImageHObjectHObjectHobject (byte / uint2)

Input image 2.

Rows1Rows1Rows1rows1rows_1 (input_control)  number-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Row coordinates of characteristic points in image 1.

Restriction: length(Rows1) >= 6 || length(Rows1) >= 3

Cols1Cols1Cols1cols1cols_1 (input_control)  number-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Column coordinates of characteristic points in image 1.

Restriction: length(Cols1) == length(Rows1)

Rows2Rows2Rows2rows2rows_2 (input_control)  number-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Row coordinates of characteristic points in image 2.

Restriction: length(Rows2) >= 6 || length(Rows2) >= 3

Cols2Cols2Cols2cols2cols_2 (input_control)  number-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Column coordinates of characteristic points in image 2.

Restriction: length(Cols2) == length(Rows2)

CamMat1CamMat1CamMat1camMat1cam_mat_1 (input_control)  hom_mat2d HHomMat2D, HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Camera matrix of the 1st camera.

CamMat2CamMat2CamMat2camMat2cam_mat_2 (input_control)  hom_mat2d HHomMat2D, HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Camera matrix of the 2nd camera.

GrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Gray value comparison metric.

Default: 'ssd' "ssd" "ssd" "ssd" "ssd"

List of values: 'ncc'"ncc""ncc""ncc""ncc", 'sad'"sad""sad""sad""sad", 'ssd'"ssd""ssd""ssd""ssd"

MaskSizeMaskSizeMaskSizemaskSizemask_size (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Size of gray value masks.

Default: 10

Suggested values: 3, 7, 15

Value range: 1 ≤ MaskSize MaskSize MaskSize maskSize mask_size

RowMoveRowMoveRowMoverowMoverow_move (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Average row coordinate shift of corresponding points.

Default: 0

Value range: 0 ≤ RowMove RowMove RowMove rowMove row_move ≤ 200

ColMoveColMoveColMovecolMovecol_move (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Average column coordinate shift of corresponding points.

Default: 0

Value range: 0 ≤ ColMove ColMove ColMove colMove col_move ≤ 200

RowToleranceRowToleranceRowTolerancerowTolerancerow_tolerance (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Half height of matching search window.

Default: 200

Value range: 1 ≤ RowTolerance RowTolerance RowTolerance rowTolerance row_tolerance

ColToleranceColToleranceColTolerancecolTolerancecol_tolerance (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Half width of matching search window.

Default: 200

Value range: 1 ≤ ColTolerance ColTolerance ColTolerance colTolerance col_tolerance

RotationRotationRotationrotationrotation (input_control)  angle.rad(-array) HTupleMaybeSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Estimate of the relative orientation of the right image with respect to the left image.

Default: 0.0

Suggested values: 0.0, 0.1, -0.1, 0.7854, 1.571, 3.142

MatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold (input_control)  number HTupleUnion[int, float]HTupleHtuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)

Threshold for gray value matching.

Default: 10

Suggested values: 10, 20, 50, 100, 0.9, 0.7

EstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Algorithm for the computation of the essential matrix and for special camera orientations.

Default: 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt"

List of values: 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard", 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt", 'trans_gold_standard'"trans_gold_standard""trans_gold_standard""trans_gold_standard""trans_gold_standard", 'trans_normalized_dlt'"trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt""trans_normalized_dlt"

DistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold (input_control)  number HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Maximal deviation of a point from its epipolar line.

Default: 1

Value range: 0.5 ≤ DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold ≤ 5

Restriction: DistanceThreshold > 0

RandSeedRandSeedRandSeedrandSeedrand_seed (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Seed for the random number generator.

Default: 0

EMatrixEMatrixEMatrixEMatrixematrix (output_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Computed essential matrix.

CovEMatCovEMatCovEMatcovEMatcov_emat (output_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

9x9 covariance matrix of the essential matrix.

ErrorErrorErrorerrorerror (output_control)  real(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Root-Mean-Square of the epipolar distance error.

Points1Points1Points1points1points_1 (output_control)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Indices of matched input points in image 1.

Points2Points2Points2points2points_2 (output_control)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Indices of matched input points in image 2.

Possible Predecessors

points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner, points_harrispoints_harrisPointsHarrisPointsHarrispoints_harris

Possible Successors

vector_to_essential_matrixvector_to_essential_matrixVectorToEssentialMatrixVectorToEssentialMatrixvector_to_essential_matrix

See also

match_fundamental_matrix_ransacmatch_fundamental_matrix_ransacMatchFundamentalMatrixRansacMatchFundamentalMatrixRansacmatch_fundamental_matrix_ransac, match_rel_pose_ransacmatch_rel_pose_ransacMatchRelPoseRansacMatchRelPoseRansacmatch_rel_pose_ransac, stationary_camera_self_calibrationstationary_camera_self_calibrationStationaryCameraSelfCalibrationStationaryCameraSelfCalibrationstationary_camera_self_calibration

References

Richard Hartley, Andrew Zisserman: “Multiple View Geometry in Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications”; MIT Press, Cambridge, MA; 2001.

Module

3D Metrology