trainf_ocr_class_mlpT_trainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp (Operator)
Name
trainf_ocr_class_mlpT_trainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
— Train an OCR classifier.
Signature
void TrainfOcrClassMlp(const HTuple& OCRHandle, const HTuple& TrainingFile, const HTuple& MaxIterations, const HTuple& WeightTolerance, const HTuple& ErrorTolerance, HTuple* Error, HTuple* ErrorLog)
double HOCRMlp::TrainfOcrClassMlp(const HTuple& TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlp(const HString& TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlp(const char* TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlp(const wchar_t* TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
(
Windows only)
static void HOperatorSet.TrainfOcrClassMlp(HTuple OCRHandle, HTuple trainingFile, HTuple maxIterations, HTuple weightTolerance, HTuple errorTolerance, out HTuple error, out HTuple errorLog)
double HOCRMlp.TrainfOcrClassMlp(HTuple trainingFile, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)
double HOCRMlp.TrainfOcrClassMlp(string trainingFile, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)
Description
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
trains the OCR classifier
OCRHandleOCRHandleOCRHandleOCRHandleocrhandle
with the training characters stored in the OCR
training files given by TrainingFileTrainingFileTrainingFiletrainingFiletraining_file
. The training files
must have been created, e.g., using write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfwrite_ocr_trainf
, before
calling trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
.
The remaining parameters have the same meaning as in
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp
and are described in detail with
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp
. A regularization of the OCR classifier and
an automatic determination of the regularization parameters (see
set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp
) is taken into
account during the training. Furthermore, if a rejection class has
been specified using set_rejection_params_ocr_class_mlpset_rejection_params_ocr_class_mlpSetRejectionParamsOcrClassMlpSetRejectionParamsOcrClassMlpset_rejection_params_ocr_class_mlp
,
before the actual training the samples for the rejection class are
generated.
Please note that training characters that have no corresponding
class in the classifier OCRHandleOCRHandleOCRHandleOCRHandleocrhandle
are discarded.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on internal data level.
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
Parameters
OCRHandleOCRHandleOCRHandleOCRHandleocrhandle
(input_control, state is modified) ocr_mlp →
HOCRMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the OCR classifier.
TrainingFileTrainingFileTrainingFiletrainingFiletraining_file
(input_control) filename.read(-array) →
HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)
Names of the training files.
Default:
'ocr.trf'
"ocr.trf"
"ocr.trf"
"ocr.trf"
"ocr.trf"
File extension:
.trf
, .otr
MaxIterationsMaxIterationsMaxIterationsmaxIterationsmax_iterations
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Maximum number of iterations of the
optimization algorithm.
Default:
200
Suggested values:
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300
WeightToleranceWeightToleranceWeightToleranceweightToleranceweight_tolerance
(input_control) real →
HTuplefloatHTupleHtuple (real) (double) (double) (double)
Threshold for the difference of the weights of
the MLP between two iterations of the
optimization algorithm.
Default:
1.0
Suggested values:
1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001
Restriction:
WeightTolerance >= 1.0e-8
ErrorToleranceErrorToleranceErrorToleranceerrorToleranceerror_tolerance
(input_control) real →
HTuplefloatHTupleHtuple (real) (double) (double) (double)
Threshold for the difference of the mean error
of the MLP on the training data between two
iterations of the optimization algorithm.
Default:
0.01
Suggested values:
1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001
Restriction:
ErrorTolerance >= 1.0e-8
ErrorErrorErrorerrorerror
(output_control) real →
HTuplefloatHTupleHtuple (real) (double) (double) (double)
Mean error of the MLP on the training data.
ErrorLogErrorLogErrorLogerrorLogerror_log
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Mean error of the MLP on the training data as a
function of the number of iterations of the
optimization algorithm.
Example (HDevelop)
* Train an OCR classifier
read_ocr_trainf_names ('ocr.trf', CharacterNames, CharacterCount)
create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, 80, \
'none', 81, 42, OCRHandle)
trainf_ocr_class_mlp (OCRHandle, 'ocr.trf', 100, 1, 0.01, Error, ErrorLog)
write_ocr_class_mlp (OCRHandle, 'ocr.omc')
Result
If the parameters are valid, the operator
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
returns the value 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
may return the error 9211 (Matrix is
not positive definite) if PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
=
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates
that not enough training samples have been stored for each class.
In this case we recommend to change PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
to
'normalization'"normalization""normalization""normalization""normalization". Another solution can be to add more
training samples.
Possible Predecessors
create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp
,
write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfwrite_ocr_trainf
,
append_ocr_trainfappend_ocr_trainfAppendOcrTrainfAppendOcrTrainfappend_ocr_trainf
,
write_ocr_trainf_imagewrite_ocr_trainf_imageWriteOcrTrainfImageWriteOcrTrainfImagewrite_ocr_trainf_image
,
set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp
Possible Successors
do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpdo_ocr_single_class_mlp
,
do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpdo_ocr_multi_class_mlp
,
write_ocr_class_mlpwrite_ocr_class_mlpWriteOcrClassMlpWriteOcrClassMlpwrite_ocr_class_mlp
Alternatives
read_ocr_class_mlpread_ocr_class_mlpReadOcrClassMlpReadOcrClassMlpread_ocr_class_mlp
See also
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp
Module
OCR/OCV