trainf_ocr_class_mlpT_trainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp (Operator)

Name

trainf_ocr_class_mlpT_trainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp — Train an OCR classifier.

Signature

trainf_ocr_class_mlp( : : OCRHandle, TrainingFile, MaxIterations, WeightTolerance, ErrorTolerance : Error, ErrorLog)

Herror T_trainf_ocr_class_mlp(const Htuple OCRHandle, const Htuple TrainingFile, const Htuple MaxIterations, const Htuple WeightTolerance, const Htuple ErrorTolerance, Htuple* Error, Htuple* ErrorLog)

void TrainfOcrClassMlp(const HTuple& OCRHandle, const HTuple& TrainingFile, const HTuple& MaxIterations, const HTuple& WeightTolerance, const HTuple& ErrorTolerance, HTuple* Error, HTuple* ErrorLog)

double HOCRMlp::TrainfOcrClassMlp(const HTuple& TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlp(const HString& TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlp(const char* TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlp(const wchar_t* TrainingFile, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const   ( Windows only)

static void HOperatorSet.TrainfOcrClassMlp(HTuple OCRHandle, HTuple trainingFile, HTuple maxIterations, HTuple weightTolerance, HTuple errorTolerance, out HTuple error, out HTuple errorLog)

double HOCRMlp.TrainfOcrClassMlp(HTuple trainingFile, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)

double HOCRMlp.TrainfOcrClassMlp(string trainingFile, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)

def trainf_ocr_class_mlp(ocrhandle: HHandle, training_file: MaybeSequence[str], max_iterations: int, weight_tolerance: float, error_tolerance: float) -> Tuple[float, Sequence[float]]

Description

trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp trains the OCR classifier OCRHandleOCRHandleOCRHandleOCRHandleocrhandle with the training characters stored in the OCR training files given by TrainingFileTrainingFileTrainingFiletrainingFiletraining_file. The training files must have been created, e.g., using write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfwrite_ocr_trainf, before calling trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp.

The remaining parameters have the same meaning as in train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp and are described in detail with train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp. A regularization of the OCR classifier and an automatic determination of the regularization parameters (see set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp) is taken into account during the training. Furthermore, if a rejection class has been specified using set_rejection_params_ocr_class_mlpset_rejection_params_ocr_class_mlpSetRejectionParamsOcrClassMlpSetRejectionParamsOcrClassMlpset_rejection_params_ocr_class_mlp, before the actual training the samples for the rejection class are generated.

Please note that training characters that have no corresponding class in the classifier OCRHandleOCRHandleOCRHandleOCRHandleocrhandle are discarded.

Execution Information

This operator modifies the state of the following input parameter:

During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.

Parameters

OCRHandleOCRHandleOCRHandleOCRHandleocrhandle (input_control, state is modified)  ocr_mlp HOCRMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the OCR classifier.

TrainingFileTrainingFileTrainingFiletrainingFiletraining_file (input_control)  filename.read(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Names of the training files.

Default: 'ocr.trf' "ocr.trf" "ocr.trf" "ocr.trf" "ocr.trf"

File extension: .trf, .otr

MaxIterationsMaxIterationsMaxIterationsmaxIterationsmax_iterations (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Maximum number of iterations of the optimization algorithm.

Default: 200

Suggested values: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300

WeightToleranceWeightToleranceWeightToleranceweightToleranceweight_tolerance (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Threshold for the difference of the weights of the MLP between two iterations of the optimization algorithm.

Default: 1.0

Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001

Restriction: WeightTolerance >= 1.0e-8

ErrorToleranceErrorToleranceErrorToleranceerrorToleranceerror_tolerance (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Threshold for the difference of the mean error of the MLP on the training data between two iterations of the optimization algorithm.

Default: 0.01

Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001

Restriction: ErrorTolerance >= 1.0e-8

ErrorErrorErrorerrorerror (output_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Mean error of the MLP on the training data.

ErrorLogErrorLogErrorLogerrorLogerror_log (output_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Mean error of the MLP on the training data as a function of the number of iterations of the optimization algorithm.

Example (HDevelop)

* Train an OCR classifier
read_ocr_trainf_names ('ocr.trf', CharacterNames, CharacterCount)
create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, 80, \
                      'none', 81, 42, OCRHandle)
trainf_ocr_class_mlp (OCRHandle, 'ocr.trf', 100, 1, 0.01, Error, ErrorLog)
write_ocr_class_mlp (OCRHandle, 'ocr.omc')

Result

If the parameters are valid, the operator trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp may return the error 9211 (Matrix is not positive definite) if PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates that not enough training samples have been stored for each class. In this case we recommend to change PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing to 'normalization'"normalization""normalization""normalization""normalization". Another solution can be to add more training samples.

Possible Predecessors

create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp, write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfwrite_ocr_trainf, append_ocr_trainfappend_ocr_trainfAppendOcrTrainfAppendOcrTrainfappend_ocr_trainf, write_ocr_trainf_imagewrite_ocr_trainf_imageWriteOcrTrainfImageWriteOcrTrainfImagewrite_ocr_trainf_image, set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp

Possible Successors

do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpdo_ocr_single_class_mlp, do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpdo_ocr_multi_class_mlp, write_ocr_class_mlpwrite_ocr_class_mlpWriteOcrClassMlpWriteOcrClassMlpwrite_ocr_class_mlp

Alternatives

read_ocr_class_mlpread_ocr_class_mlpReadOcrClassMlpReadOcrClassMlpread_ocr_class_mlp

See also

train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp

Module

OCR/OCV