wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter (Operator)

Name

wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter — Image restoration by Wiener filtering.

Signature

wiener_filter(Image, Psf, FilteredImage : RestoredImage : : )

Herror wiener_filter(const Hobject Image, const Hobject Psf, const Hobject FilteredImage, Hobject* RestoredImage)

Herror T_wiener_filter(const Hobject Image, const Hobject Psf, const Hobject FilteredImage, Hobject* RestoredImage)

void WienerFilter(const HObject& Image, const HObject& Psf, const HObject& FilteredImage, HObject* RestoredImage)

HImage HImage::WienerFilter(const HImage& Psf, const HImage& FilteredImage) const

static void HOperatorSet.WienerFilter(HObject image, HObject psf, HObject filteredImage, out HObject restoredImage)

HImage HImage.WienerFilter(HImage psf, HImage filteredImage)

def wiener_filter(image: HObject, psf: HObject, filtered_image: HObject) -> HObject

Description

wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter produces an estimate of the original image (= image without noise and blurring) by minimizing the mean square error between estimated and original image. wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter can be used to restore images corrupted by noise and/or blurring (e.g., motion blur, atmospheric turbulence or out-of-focus blur). Method and realization of this restoration technique bases on the following model: The corrupted image is interpreted as the output of a (disturbed) linear system. Functionality of a linear system is determined by its specific impulse response. So the convolution of original image and impulse response results in the corrupted image. The specific impulse response describes image acquisition and the occurred degradations. In the presence of additive noise an additional noise term must be considered. So the corrupted image can be modeled as the result of [convolution(impulse_response,original_image)] + noise_term The noise term encloses two different terms describing image-dependent and image-independent noise. According to this model, two terms must be known for restoration by Wiener filtering:

  1. degradation-specific impulse response

  2. noise term

So wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter needs a smoothed version of the input image to estimate the power spectral density of noise and original image. One can use one of the smoothing HALCON-filters (e.g., eliminate_min_maxeliminate_min_maxEliminateMinMaxEliminateMinMaxeliminate_min_max) to get this version. wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter needs further the impulse response that describes the specific degradation. This impulse response (represented in spatial domain) must fit into an image of HALCON image type real. There exist two HALCON-operators for generation of an impulse response for motion blur and out-of-focus (see gen_psf_motiongen_psf_motionGenPsfMotionGenPsfMotiongen_psf_motion, gen_psf_defocusgen_psf_defocusGenPsfDefocusGenPsfDefocusgen_psf_defocus). The representation of the impulse response presumes the origin in the upper left corner. This results in the following disposition of an NxM sized image:

wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter works as follows:

The result image has got image type real.

Attention

PsfPsfPsfpsfpsf must be of image type real and conform to ImageImageImageimageimage and FilteredImageFilteredImageFilteredImagefilteredImagefiltered_image in image width and height.

Execution Information

Parameters

ImageImageImageimageimage (input_object)  (multichannel-)image objectHImageHObjectHObjectHobject (byte / direction / cyclic / int1 / int2 / uint2 / int4 / real)

Corrupted image.

PsfPsfPsfpsfpsf (input_object)  (multichannel-)image objectHImageHObjectHObjectHobject (real)

impulse response (PSF) of degradation (in spatial domain).

FilteredImageFilteredImageFilteredImagefilteredImagefiltered_image (input_object)  (multichannel-)image objectHImageHObjectHObjectHobject (byte / direction / cyclic / int1 / int2 / uint2 / int4 / real)

Smoothed version of corrupted image.

RestoredImageRestoredImageRestoredImagerestoredImagerestored_image (output_object)  image objectHImageHObjectHObjectHobject * (real)

Restored image.

Example (C)

/* Restoration of a noisy image (size=256x256), that was blurred by motion*/
Hobject object;
Hobject restored;
Hobject psf;
Hobject noisefiltered;
/* 1. Generate a Point-Spread-Function for a motion-blur with       */
/*    parameter a=10 and direction along the x-axis                 */
gen_psf_motion(&psf,256,256,10,0,3);
/* 2. Noisefiltering of the image                                   */
median_image(object,&noisefiltered,"circle",2,0);
/* 3. Wiener-filtering                                              */
wiener_filter(object,psf,noisefiltered,&restored);

Result

wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter returns 2 ( H_MSG_TRUE) if all parameters are correct. If the input is empty wiener_filterwiener_filterWienerFilterWienerFilterwiener_filter returns with an error message.

Possible Predecessors

gen_psf_motiongen_psf_motionGenPsfMotionGenPsfMotiongen_psf_motion, simulate_motionsimulate_motionSimulateMotionSimulateMotionsimulate_motion, simulate_defocussimulate_defocusSimulateDefocusSimulateDefocussimulate_defocus, gen_psf_defocusgen_psf_defocusGenPsfDefocusGenPsfDefocusgen_psf_defocus, optimize_fft_speedoptimize_fft_speedOptimizeFftSpeedOptimizeFftSpeedoptimize_fft_speed

Alternatives

wiener_filter_niwiener_filter_niWienerFilterNiWienerFilterNiwiener_filter_ni

See also

simulate_motionsimulate_motionSimulateMotionSimulateMotionsimulate_motion, gen_psf_motiongen_psf_motionGenPsfMotionGenPsfMotiongen_psf_motion, simulate_defocussimulate_defocusSimulateDefocusSimulateDefocussimulate_defocus, gen_psf_defocusgen_psf_defocusGenPsfDefocusGenPsfDefocusgen_psf_defocus

References

M. Lückenhaus:“Grundlagen des Wiener-Filters und seine Anwendung in der Bildanalyse”; Diplomarbeit; Technische Universität München, Institut für Informatik; Lehrstuhl Prof. Radig; 1995
Azriel Rosenfeld, Avinash C. Kak: Digital Picture Processing, Computer Science and Aplied Mathematics, Academic Press New York/San Francisco/London 1982

Module

Foundation