hom_mat2d_invertT_hom_mat2d_invertHomMat2dInvertHomMat2dInverthom_mat2d_invert (Operator)

Name

hom_mat2d_invertT_hom_mat2d_invertHomMat2dInvertHomMat2dInverthom_mat2d_invert — Invert a homogeneous 2D transformation matrix.

Signature

hom_mat2d_invert( : : HomMat2D : HomMat2DInvert)

Herror T_hom_mat2d_invert(const Htuple HomMat2D, Htuple* HomMat2DInvert)

void HomMat2dInvert(const HTuple& HomMat2D, HTuple* HomMat2DInvert)

HHomMat2D HHomMat2D::HomMat2dInvert() const

static void HOperatorSet.HomMat2dInvert(HTuple homMat2D, out HTuple homMat2DInvert)

HHomMat2D HHomMat2D.HomMat2dInvert()

def hom_mat2d_invert(hom_mat_2d: Sequence[float]) -> Sequence[float]

Description

hom_mat2d_inverthom_mat2d_invertHomMat2dInvertHomMat2dInverthom_mat2d_invert inverts the homogeneous 2D transformation matrix given by HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d. The resulting matrix is returned in HomMat2DInvertHomMat2DInvertHomMat2DInverthomMat2DInverthom_mat_2dinvert.

Attention

Note that homogeneous matrices are stored row-by-row as a tuple; the last row is usually not stored because it is identical for all homogeneous matrices that describe an affine transformation. For example, the homogeneous matrix is stored as the tuple [ra, rb, tc, rd, re, tf]. However, it is also possible to process full 3×3 matrices, which represent a projective 2D transformation.

Execution Information

Parameters

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (input_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

HomMat2DInvertHomMat2DInvertHomMat2DInverthomMat2DInverthom_mat_2dinvert (output_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Output transformation matrix.

Result

hom_mat2d_inverthom_mat2d_invertHomMat2dInvertHomMat2dInverthom_mat2d_invert returns 2 ( H_MSG_TRUE) if the parameters are valid and the input matrix is invertible. Otherwise, an exception is raised.

Possible Predecessors

hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

Possible Successors

hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

Module

Foundation