Name
regiongrowing_nregiongrowing_nRegiongrowingNregiongrowing_nRegiongrowingNRegiongrowingN — Segment an image using regiongrowing for multi-channel images.
Herror regiongrowing_n(const Hobject MultiChannelImage, Hobject* Regions, const char* Metric, double MinTolerance, double MaxTolerance, const Hlong MinSize)
Herror T_regiongrowing_n(const Hobject MultiChannelImage, Hobject* Regions, const Htuple Metric, const Htuple MinTolerance, const Htuple MaxTolerance, const Htuple MinSize)
Herror regiongrowing_n(Hobject MultiChannelImage, Hobject* Regions, const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize)
HRegionArray HImage::RegiongrowingN(const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize) const
HRegionArray HImageArray::RegiongrowingN(const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize) const
void RegiongrowingN(const HObject& MultiChannelImage, HObject* Regions, const HTuple& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, const HTuple& MinSize)
HRegion HImage::RegiongrowingN(const HString& Metric, const HTuple& MinTolerance, const HTuple& MaxTolerance, Hlong MinSize) const
HRegion HImage::RegiongrowingN(const HString& Metric, double MinTolerance, double MaxTolerance, Hlong MinSize) const
HRegion HImage::RegiongrowingN(const char* Metric, double MinTolerance, double MaxTolerance, Hlong MinSize) const
static void HOperatorSet.RegiongrowingN(HObject multiChannelImage, out HObject regions, HTuple metric, HTuple minTolerance, HTuple maxTolerance, HTuple minSize)
HRegion HImage.RegiongrowingN(string metric, HTuple minTolerance, HTuple maxTolerance, int minSize)
HRegion HImage.RegiongrowingN(string metric, double minTolerance, double maxTolerance, int minSize)
regiongrowing_nregiongrowing_nRegiongrowingNregiongrowing_nRegiongrowingNRegiongrowingN performs a multi-channel
regiongrowing. The n channels give
rise to an n-dimensional feature vector. Neighboring points are
aggregated into the same region if the difference of their feature
vectors with respect to the given metric lies in the interval
[MinToleranceMinToleranceMinToleranceMinToleranceMinToleranceminTolerance, MaxToleranceMaxToleranceMaxToleranceMaxToleranceMaxTolerancemaxTolerance]. Only
neighbors of the 4-neighborhood are examined. The following metrics can be
used:
Let g_{A} denote the gray value in the feature vector A at point
a of the image, and likewise be g_{B} the gray value in the
feature vector B at point a neighboring point b. Let g(d) be
the gray value with index d. Furthermore, let MinT denote
MinToleranceMinToleranceMinToleranceMinToleranceMinToleranceminTolerance and MaxT denote MaxToleranceMaxToleranceMaxToleranceMaxToleranceMaxTolerancemaxTolerance.
- '1-norm':
-
Sum of absolute values
- '2-norm':
-
Euclidian distance
- '3-norm':
-
p - Norm with p = 3
- '4-norm':
-
p - Norm with p = 4
- 'n-norm':
-
Minkowski distance
- 'max-diff':
-
Supremum distance
- 'min-diff':
-
Infimum distance
- 'variance':
-
Variance of gray value differences
- 'dot-product':
-
Dot product
- 'correlation':
-
Correlation
- 'mean-diff':
-
Difference of arithmetic means
- 'mean-ratio':
-
Ratio of arithmetic means
- 'length-diff':
-
Difference of the vector lengths
- 'length-ratio':
-
Ratio of the vector lengths
- 'n-norm-ratio':
-
Ratio of the vector lengths w.r.t the p-norm with
p = n
- 'gray-max-diff':
-
Difference of the maximum gray values
- 'gray-max-ratio':
-
Ratio of the maximum gray values
- 'gray-min-diff':
-
Difference of the minimum gray values
- 'gray-min-ratio':
-
Ratio of the minimum gray values
- 'variance-diff':
-
Difference of the variances over all gray values (channels)
- 'variance-ratio':
-
Ratio of the variances over all gray values (channels)
- 'mean-abs-diff':
-
Difference of the sum of absolute values over all gray values (channels)
- 'mean-abs-ratio':
-
Ratio of the sum of absolute values over all gray values (channels)